
OFFICIAL USE

OFFICIAL USE

Malware report

CCN-CERT ID-09/20

Guloader

April 2020

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

2 Centro Criptológico Nacional OFFICIAL USE

Edita:

 Centro Criptológico Nacional, 2019

Fecha de Edición: April de 2020

LIMITACIÓN DE RESPONSABILIDAD

El presente documento se proporciona de acuerdo con los términos en él recogidos, rechazando

expresamente cualquier tipo de garantía implícita que se pueda encontrar relacionada. En ningún caso,

el Centro Criptológico Nacional puede ser considerado responsable del daño directo, indirecto, fortuito

o extraordinario derivado de la utilización de la información y software que se indican incluso cuando se

advierta de tal posibilidad.

AVISO LEGAL

Quedan rigurosamente prohibidas, sin la autorización escrita del Centro Criptológico Nacional, bajo las

sanciones establecidas en las leyes, la reproducción parcial o total de este documento por cualquier

medio o procedimiento, comprendidos la reprografía y el tratamiento informático, y la distribución de

ejemplares del mismo mediante alquiler o préstamo públicos.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

3 Centro Criptológico Nacional OFFICIAL USE

INDEX

1. ABOUT CCN-CERT, NATIONAL GOVERNMENTAL CERT ... 4

2. EXECUTIVE SUMMARY ... 4

3. GENERAL DETAILS .. 5

4. INFECTION PROCESS ... 6

4.1 VISUAL BASIC LOADER... 6

4.2 SHELLCODE .. 7

4.2.1 ANTI-ANALYSIS ... 8

4.2.2 IMPORTED FUNCTIONS .. 10

4.2.3 INJECTION ... 10

4.3 INJECTED SHELLCODE .. 12

4.3.1 PERSISTENCE... 12

4.3.2 COMMUNICATIONS .. 12

4.3.3 ADDITIONAL BINARY EXECUTION ... 14

5. DISINFECTION .. 15

6. DETECTION RULES .. 16

6.1 YARA RULE ... 16

7. INDICATORS OF COMPROMISE ... 16

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

4 Centro Criptológico Nacional OFFICIAL USE

1. ABOUT CCN-CERT, NATIONAL GOVERNMENTAL CERT

The CCN-CERT is the Computer Emergency Response Team of the National

Cryptologic Centre, CCN, within the National Intelligence Centre, CNI. This service was

created in 2006 as a Spanish National Governmental CERT and its functions are

included in Law 11/2002 regulating the CNI, RD 421/2004 regulating the CCN and RD

3/2010, dated 8th January, regulating the National Security Scheme (ENS), modified by

RD 951/2015 of 23rd October.

Its mission therefore is to contribute to the improvement of Spanish

cybersecurity, being the national alert and response centre that cooperates and helps

to respond quickly and efficiently to cyberattacks and to actively confront cyber

threats, including the coordination at the national public level of the different Incident

Response Teams or existing Security Operations Centres.

Its ultimate aim is to make cyberspace more secure and reliable, preserving

classified information (as stated in Article 4.F of Law 11/2002) and sensitive

information, defending Spanish Technological Heritage, training expert personnel,

applying security policies and procedures and using and developing the most

appropriate technologies for this purpose.

In accordance with these regulations and Law 40/2015 on the LegalRegulation

for the Public Sector, the CCN-CERT is responsible for the management of cyber

incidents affecting any public body or company. In the case of critical operators in the

public sector, the management of cyber incidents will be carried out by the CCN-CERT

in coordination with the CNPIC.

2. EXECUTIVE SUMMARY

There has been evidence of a malware campaign in Spain and Portugal, in

which using a false COVID-19 vaccine as a hook, the recipient is urged to open an

attached file, called 'COVID-19.exe' inside ' COVID- 19.tar ', which contains a

compressed version of Guloader.

This document presents the analysis performed over the downloader variant

known as Guloader, identified by the SHA256 signature

5d91ff8d079c5d890da78adb8871e146749872911efe2ebf22cfd02c698ed33d.

The main goal of the binary is to load in memory a shellcode aimed with

downloading an additional payload from a remote server for its execution. Guloader

appeared in the malware scene in December 2019, but it has been the rise it has

shown in April 2020 the fact that has motivated this research. The Guloader name

given to this family comes from the words “Google loader”, as in early stages of its

development the actors used Google Drive locations to store additional payloads. The

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

5 Centro Criptológico Nacional OFFICIAL USE

project is being actively updated and the obfuscation scheme it uses is playing a key

role to maintain the samples undetected.

Nowadays, downloaders provide an essential service regarding malware

distribution. Actors willing to increment the number of bots from their botnets

definitely appreciate an effective tool able to provide installs at the same time it

remains undetected. If it is true the lifespan of downloader families does not last long,

families like Smokeloader or Emotet prove otherwise.

In the next sections of the document, technical details are provided about the

behavior of the initial binary, as well as of the shellcode it loads in memory. A YARA

rule and indicators of compromise to detect the analyzed sample are provided too.

3. GENERAL DETAILS

The SHA256 signature below identifies the loader component triggering the

infection process.

File SHA256

guloader.exe 5d91ff8d079c5d890da78adb8871e146749872911efe2ebf22cfd02c698ed33d

The sample, a Portable Executable for 32-bit Windows systems developed in

Visual Basic, fakes its compilation timestamp going back to 2013.

Figure 1. Properties of the initial binary

It was first seen on April 16th 2020.

While a packer does not protect the executable, the obfuscation layer it shows,

which changes across samples, seems to be working against anti-virus detections.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

6 Centro Criptológico Nacional OFFICIAL USE

4. INFECTION PROCESS

The infection process is divided in three stages, defining this way the structure of

the current section:

 Loader, the code aimed with loading, decoding and executing the shellcode.

 Shellcode, the aimed is to detect an analysis environment, import libraries

and finally inject itself into a legitimate binary of the system.

 Download an additional payload and finally achieving persistence in the

system.

4.1 VISUAL BASIC LOADER

The initial binary serves as a loader for the piece of shellcode responsible for

subsequent stages of the infection process. Despite the binary has been developed in

Visual Basic, the code aimed with loading, decoding and executing the shellcode can be

analyzed with any disassembler.

Figure 2. Shellcode decoding routine

The piece of shellcode is stored in the .text section of the initial binary. After

copying it to a new allocated buffer and decoding it in its new location with a 4-byte

XOR routine, execution continues from the entry point of the shellcode, still within the

process space of the initial binary.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

7 Centro Criptológico Nacional OFFICIAL USE

Figure 3. Unconditional jump to shellcode

The code tasked with the execution of the shellcode shows an obfuscation layer

consisting of the insertion of junk instructions, aimed to increase the code complexity

while the semantics of the code remain the same. Figures 2 and 3 highlight the

instructions of interest for the analyst while the rest correspond with the

aforementioned junk code. This obfuscation technique is used in both the initial binary

and in the shellcode to be explained in the following subsections.

4.2 SHELLCODE

The second stage of the infection process begins with the first execution of the

shellcode.

Figure 4. Entry point of the shellcode

Aside from the obfuscation scheme described above, the shellcode implements a

variety of techniques to complicate dynamic analysis, where the majority of them are

aimed to break the debugger.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

8 Centro Criptológico Nacional OFFICIAL USE

4.2.1 ANTI-ANALYSIS

The first of the techniques to prevent the malicious code to run, in what the

developers would consider an analysis environment, is based in enumerating the

windows of the system by calling the function EnumWindows. If the returning value is

lower than the expected one, execution finalizes in this stage.

Figure 5. Process is terminated if EAX value is lower than 12

To prevent debuggers to attach to running samples, Guloader implements hooks

for functions DbgBreakPoint and DbgUiRemoteBreakin, as they are responsible for

taking control over the process whose execution is to be interrupted.

The 0xCC opcode from the function body from DbgBreakPoint is substituted by a

NOP.

Figure 6. Hooked DbgBreakPoint function

On the other hand, the first instructions from DbgUiRemoteBreakin are

substituted by a small piece of code, aimed with generating an exception if this

function is called.

Figure 7. Hooked DbgUiRemoteBreakin function

Continuing with debugger exceptions, the shellcode hides its running thread

from debuggers by calling the function NtSetInformationThread pushing the value

ThreadHideFromDebugger as a parameter.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

9 Centro Criptológico Nacional OFFICIAL USE

Figure 8. Thread hide to debuggers

If after performing such call the execution flow reaches a breakpoint, the process

would be terminated due to a crash.

In addition to the described methods to crash the debugged process, certain

functions are not called directly from the malicious code but are inspected in further

detail to check for the presence of breakpoints set to give control to the analyst.

Figure 9. Software and hardware breakpoint checks

The function checks for both hardware breakpoints, by checking DR0-DR7

registers, and software breakpoints by looking for the opcodes 0xCC, 0x3CD and 0xB0F

whenever a function is to be checked. If breakpoints are found, the program modifies

its flow resulting in a crash finalizing the execution of the shellcode.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

10 Centro Criptológico Nacional OFFICIAL USE

4.2.2 IMPORTED FUNCTIONS

As observed in figure 8, before calling the function NtSetInformationThread its

address is retrieved dynamically. This technique of resolving functions addresses at run

time provides and additional layer of protection against static analysis, so at first sight

there is no way to tell which functions from Windows libraries are imported and where

are they called.

Functions to be imported are identified by the dbj2 value of their name. To

import a function, its hashed name is placed into EDX register and the exports from the

respective library are iterated and dbj2 hashed until finding a match.

Figure 10. djb2 hash implementation

4.2.3 INJECTION

If execution has not been interrupted until this point, the last step of the

shellcode when running from the process space of the initial binary consists of

injecting itself into a legitimate binary of the system. The analyzed sample chooses the

Internet Explorer Add-on Installer to perform the injection.

C:\Program Files(x86)\Internet Explorer\ieinstal.exe

To migrate to the selected process, it is first created in a suspended state.

Figure 11. ieinstal.exe suspended process

Next, the Windows msvbvm60.dll library is mapped into the address

0x00400000 of the new process.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

11 Centro Criptológico Nacional OFFICIAL USE

Figure 12. msvbvm60.dll is mapped into the suspended process

Finally, by calling the function NtWriteVirtualMemory, the shellcode being

executed from within the process space of the initial binary is copied into the new

spawned process.

Figure 13. Shellcode injected in ieinstal.exe

It is possible to observe the opcodes from the injected shellcode into the

ieinstall.exe process being the same as the opcodes shown in the entry point of the

shellcode from figure 4.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

12 Centro Criptológico Nacional OFFICIAL USE

The first execution of the shellcode finalizes after the injection, continuing the

infection process from the new created process, from where the shellcode resumes

execution choosing an alternative flow.

4.3 INJECTED SHELLCODE

In this final stage of the execution process, the main goal of the shellcode is

finally shown, to download an additional payload from a remote server to execute it,

achieving persistence in the infected machine to grant that behavior after each reboot.

4.3.1 PERSISTENCE

Before writing an entry in the registry to achieve the persistence, the installation

directory is created after a folder and an executable name hardcoded in the shellcode.

C:\Users\[User]\Historiels\Diadelphian.exe

The registry key value IMPATIENT, also hardcoded, is created in the registry key

Software\Microsoft\Windows\CurrentVersion\Run pointing to the binary in its

installation directory, achieving by these means the persistence in the system.

Figure 14. Persistence of Guloader

4.3.2 COMMUNICATIONS

Before executing the final payload, first the shellcode needs to download it. The

analyzed sample of Guloader shows an URL location from where to retrieve the final

payload and a second URL, which shows what seems to be a default placeholder from

the builder.

Additional downloads

https[:]//www.seashotbin[.]com/Lord/Glx_encrypted_3277CA0.bin

http://myurl/myfile.bin

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

13 Centro Criptológico Nacional OFFICIAL USE

The binary is retrieved performing a GET request with the hardcoded user-agent

defined in the shellcode, which is characteristic of Internet Explorer 11.

Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko

Remote servers hosting additional downloads from Guloader usually allow to list

their content and the name of the binaries usually follows the pattern below.

[random]_encrypted_[A-F0-9]{7}.bin

Figure 15. Remote server open directory

Something worthwhile to highlight is the fact that Guloader checks the size of

the downloaded payloads to check for a specific length before executing them.

Figure 16. Downloaded file size check

If the calculated size does not match with the expected one, which is hardcoded

in the shellcode, the payload is ignored. If the size matches, the payload is decoded

following a XOR routine prior to its execution. Taking a look at the encoded binary,

there is a header formed of bytes following the distribution [a-f0-9]{64}, which is

directly discarded before decoding the rest of the file to retrieve the final executable.

The instruction at address 0x005B0AF6 shows how these 64 (0x40) bytes are discarded

before checking the size. The bytes from the discarded header seem to have changed

starting from April 20th 2020, so instead of the hexadecimal-like characters they now

can take any value from [0x00-0xFF]{64}. This change does not affect the malware

behavior in any way as the 64 bytes header is still discarded.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

14 Centro Criptológico Nacional OFFICIAL USE

Figure 17. Downloaded payload from the remote server

On April 20th, 2020, the actors appear to have decided to leave the

aforementioned header format behind and instead of [a-f0-9] {64}, the range is

extended to any value resulting in [0x00-0xFF] {64}. Despite the change in format,

the header is still discarded

For the decoding, the shellcode stores the XOR key, 575 bytes in length for this

sample. The sample downloaded for execution by the analyzed Guloader turned out to

be a remote access tool, known as Netwire.

File SHA256

Netwire af0b56ffffc1e8df83dc104e0afe91f8921ecfc66fb5599214189fdc90ec1a4d

4.3.3 ADDITIONAL BINARY EXECUTION

Instead of executing the additional payload in a new process, Guloader maps the

new executable in the memory address 0x00400000 (where it previously mapped the

msvbvm60.dll library) to run the sample in a new thread, also hidden from debuggers.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

15 Centro Criptológico Nacional OFFICIAL USE

Figure 18. Fetched payload is run in an additional thread

After loading the additional payload, the tasks of Guloader are completed and its

execution thread is terminated.

5. DISINFECTION

For disinfecting a system where the analyzed sample has been installed, the

steps listed below are proposed.

1. Delete the installation directory from the persistence section and its content.

2. Delete the registry key from the persistence section pointing to the installation

directory.

3. Reboot the system.

As Guloader is able to download and execute additional samples, the complete

disinfection of the machine cannot be granted after following the described steps.

CCN-STIC-

426

OFFICIAL USE

CCN-CERT ID-09/20 Malware report - Guloader

16 Centro Criptológico Nacional OFFICIAL USE

6. DETECTION RULES

6.1 YARA RULE

rule guloader

{

 meta:

 date = "2020-04-16"

 author = “CCN-CERT”

 sha256 = "5d91ff8d079c5d890da78adb8871e146749872911efe2ebf22cfd02c698ed33d"

 strings:

 $encoded_shellcode = {82 0A C4 0D 7B 8B 18 B0 2F 02 FD 19 7A 8B 18

 F1 22 08 F0 E1 F3 CE 5C 19 AF 25 18 F1 93 CA}

 $msvbvm60 = "MSVBVM60.DLL" ascii

 condition:

 uint16(0) == 0x5A4D and all of them

}

7. INDICATORS OF COMPROMISE

File SHA256

Loader Visual Basic 5d91ff8d079c5d890da78adb8871e146749872911efe2ebf22cfd02c698ed33d

Netwire af0b56ffffc1e8df83dc104e0afe91f8921ecfc66fb5599214189fdc90ec1a4d

Installation directory

C:\Users\[User]\Historiels\Diadelphian.exe

Final payload location

https[:]//www.seashotbin[.]com/Lord/Glx_encrypted_3277CA0.bin

Registry key Key value

HKCU\Software\Microsoft\Windows\

CurrentVersion\Run\IMPATIENT
C:\Users\[User]\Historiels\Diadelphian.exe

		2020-04-22T12:23:30+0200

