
BP/28
CCN-CERT

Recommendations on
Secure Development

JANUARY 2023

GOOD PRACTICE REPORT

Edited by:

Paseo de la Castellana 109, 28046 Madrid

© National Cryptology Centre, 2023

Date of issue: January de 2023

LIMITATION OF LIABILITY

This document is provided in accordance with the terms contained herein, expressly rejecting

any type of implicit guarantee that may be related to it. Under no circumstances can the National

Cryptologic Centre be held responsible for direct, indirect, fortuitous or extraordinary damage derived

from the use of the information and software indicated, even when warned of such a possibility.

LEGAL NOTICE

The reproduction of all or part of this document by any means or process, including reprography

and computer processing, and the distribution of copies by public rental or loan, is strictly prohibited

without the written authorisation of the National Cryptologic Centre, subject to the penalties

established by law.

General State Administration Publications Catalogue
https://cpage.mpr.gob.es

3CCN-CERT BP/28: Recommendations on Secure Development

	 1. Introduction	 	 5

	 2. Secure architecture	 7
	 	 	 2.1. Potential risks	 7
	 	 	 2.2. Security recommendations	 8
	 	 	 2.3. References	 9

	 3. Authentication	 	 10
	 	 	 3.1. Types of authentication	 10
	 	 	 3.2. Authentication methods	 11
	 	 	 3.3. Potential risks	 16
	 	 	 3.4. Security recommendations	 18
	 	 	 3.5. Example	 20
	 	 	 3.6. References	 20

	 4. Authorisation	 	 21
	 	 	 4.1. Potential risks	 21
	 	 	 4.2. Security recommendations	 23
	 	 	 4.4. References	 24
	 	 	 4.3. Example	 24

	 5. Session management	 25
	 	 	 5.1. Security aspects	 26
	 	 	 5.2. Potential risks	 29
	 	 	 5.3. Security recommendations	 30
	 	 	 5.4. Example	 31
	 	 	 5.5. References	 32

	 6. Validation of input and output data	 33
	 	 	 6.1. Validation techniques	 34
	 	 	 6.2. Flow chart	 36
	 	 	 6.3. Potential risks	 37
	 	 	 6.4. Security recommendations	 38
	 	 	 6.5. Example	 40
	 	 	 6.6. References	 40

	 7. Error management	 41
	 	 	 7.1. Confidentiality of messages	 41
	 	 	 7.2. Uncontrolled errors	 42
	 	 	 7.3. Security recommendations	 43
	 	 	 7.4. Example	 44
	 	 	 7.5. References	 44

	 8. Secure registration	 45
	 	 	 8.1. Potential risks	 46
	 	 	 8.2. Security recommendations	 46
	 	 	 8.4. References	 �47
	 	 	 8.3. Example	 47

Index

4 CCN-CERT BP/28: Recommendations on Secure Development

	 9. Cryptography	 	 48
	 	 	 9.1. Use of encryption	 48
	 	 	 9.2. Potential risks	 50
	 	 	 9.3. Recomendaciones de seguridad	 51
	 	 	 9.4. Example	 52
	 	 	 9.5. References	 52

10. Secure file management	 53
	 	 	 10.1. Potential risks	 53
	 	 	 10.2. Security recommendations	 54
	 	 	 10.3. Example	 55
	 	 	 10.4. References	 55

11. Transaction security	 56
	 	 	 11.1. Potential risks	 57
	 	 	 11.2. Security recommendations	 57
	 	 	 11.3. Example	 58
	 	 	 11.4. References	 58

12. Communications security	 59
	 	 	 12.1. Potential risks	 59
	 	 	 12.2. Security recommendations	 60

13. Data protection	 	 61
	 	 	 13.1. Potential risks	 62
	 	 	 13.2. Security recommendations	 62
	 	 	 13.3. Example	 63
	 	 	 13.4. References	 �64

14. Python: Complementary indications	 65
	 	 	 14.1. Architecture	 65
	 	 	 14.2. Authentication	 67
	 	 	 14.3. Session management	 68
	 	 	 14.4. Validation of input parameters	 69

15. Checklist security controls	 74

16. Security vulnerabilities and controls	 85

17. Security measures and security controls	 86

18. Glossary	 	 	 88

19. References	 	 89

annex a. Basic cheatsheet	 91

annex b. Advanced cheatsheet	 93

Index

5

1. Introduction

Objetives

This document is intended to help development teams understand
the most common security controls that should be applied during the
software development lifecycle. The secure development guides pro-
vide developers with a set of recommendations to follow that enable
them to build applications with security techniques.

Establishing security measures during application development in the
design and coding phases not only lays the foundation for security
against the most common vulnerabilities, but also reduces future
costs, as fixing problems at a later stage is more costly.

Scope

Regardless of the development methodology used, the definition of
security controls should start at the design stage or even before, and
continue throughout the application lifecycle to ensure that the appli-
cation will continue to have the relevant security measures in case of
changes to the initial arrangement due to business needs.

Building secure software involves activities on many levels, not only
to comply with internal security policies, but also to follow the law and
external regulations such as HIPAA, PCI or GDPR. The resulting soft-
ware must implement security features that meet these requirements.

In addition, during the threat modelling process of a project, when
properly combined with security requirements engineering and secure
design principles, it allows the development team to identify the secu-
rity features that are necessary to ensure the integrity, confidentiality
and availability of the data involved in the project.

CCN-CERT BP/28: Recommendations on Secure Development

The secure development
guides provide
developers with a set
of recommendations to
follow that enable them
to build applications with
security techniques

6

The guide has been classified as follows:

 	 Security recommendations for the following aspects:

	 ◗	 Architecture

	 ◗	 Authorisation

	 ◗	 Authentication

	 ◗	 Session management

	 ◗	 Validation of input and output parameters

	 ◗	 Error handling

	 ◗	 Secure registration

	 ◗	 Cryptography

	 ◗	 Secure file management

	 ◗	 Transaction security

	 ◗	 Communications security

	 ◗	 Data protection

 	 Supplementary indications for Python

 	 Security Controls Checklist

 	 Security Vulnerabilities and Controls

 	 ENS Security Measures and Security Controls

 	 �Annexes at the end of the document with Basic and Advanced
Security Controls

1. Introducción

CCN-CERT BP/28: Recommendations on Secure Development

7

2. Architecture safe

A solid secure architecture is fundamental to the construction of the
software as it is the foundation on which the software is built and
developed.

To achieve this purpose, it is necessary to identify the components
used, ensure that there are no known vulnerabilities and that they are
properly updated.

The architecture must always be designed with security requirements
in mind in order to avoid or limit potential security threats.

2.1. 
Potential
risks

Potential threats to an application can be multiple and of high proba-
bility when:

	 Components with known vulnerabilities are used.

	 Outdated, obsolete or unsupported components are used.

	 Unidentified components are used.

	 Expendable ports are kept open.

CCN-CERT BP/28: Recommendations on Secure Development

8

2.2. Security recommendations

	 Identify all the components of the architecture.

	 ◗	� Components that have not been correctly identified are po-
tential security risks.

	 �Conduct a review of the basing of each hardware device
from a security point of view:

	 ◗	 �Review of configurations. Ensure that the configurations are
the most secure: no debugging options enabled, no default
users and passwords, etc.

	 ◗	� Check ports. Make sure that only those communication ports
that are strictly necessary are open.

	 ◗	� Status of the latest system update.

	 ◗	� Identification of all the system components: Libraries, Mod-
ules, Frameworks, Services, etc.

	 ◗	 �For each system component, perform the same baseline re-
view of configurations and update status.

	 �From the result of the previous review, obtain a report of the
components in which there are vulnerabilities detected for
which there is currently no security patch and analyse their
level of risk within the application. It could be that certain
vulnerabilities detected do not pose a real risk to the applica-
tion or do not have a relevant impact.

	 �For those vulnerabilities that pose a real risk, keep a close
watch on vulnerable components so that they are updated as
soon as possible.

	 �Conduct a study of how the security problems created by
these risk vulnerabilities could be avoided or mitigated by al-
ternative security systems.

	 �Improve logical perimeter security by installing firewalls, IDS
or similar devices, or by segmenting the network.

Ensure that the
configurations are
the most secure: no
debugging options
enabled, no default users
and passwords, etc

2. Architecture safe

CCN-CERT BP/28: Recommendations on Secure Development

9

	 Ensure that data is protected by authorisation mechanisms
between environments through physical or logical segrega-
tion and by backups to ensure availability.

	 �Use the most recent version of the programming language.

	 �Use a Virtual Environment as a project workspace if applica-
ble according to the programming language.

	 �Correct import of packages according to programming lan-
guage. Installed and imported packages, thoroughly check-
ing the security of the packages to be installed.

	 �Disable all debugging options in Production that prevent in-
formation leakage in the detailed error messages.

	 �Use tools in the IDE that perform basic semantic and security
analysis.

2.3. References	 �Design Patterns:
https://refactoring.guru/es/design-patterns [1]

	� OWASP. Design Secure Web Applications:
https://owasp.org/www-pdf-archive/APAC13_Ashish_Rao.pdf [2]

	 �Areas of Homeland Security: Critical Infrastructure Protection:
file:///Users/lagor/Downloads/BOE-400_Ambitos_de_la_Seguridad_Nacional_
Proteccion_de_Infraestructuras_Criticas.pdf [3]

2. Architecture safe

CCN-CERT BP/28: Recommendations on Secure Development

10

3. Authentication

Authentication is the verification of the identity of a user or device in
order to grant access to its resources or information. This task usual-
ly requires the presentation of credentials, such as a username and
password, to verify that the user is indeed who he/she claims to be.

It is the main area of security control, so the type and method of au-
thentication must be part of the design.

3.1. Types of authentication

	 �Network authentication: the identity of a user or device is ver-
ified through the use of network credentials, such as a user-
name and password, or through the verification of a digital
certificate.

	 �Password-based authentication: the user provides a user-
name and password to access a system or resource.

	 �Token-based authentication: the user receives a physical or
digital token that must be provided in order to access a system
or resource.

	 �Two-factor authentication: the user is required to provide two
(2) forms of verification of their identity, such as a password
and a code sent to their mobile phone.

	 �Biometric authentication: physical characteristics of the user,
such as their fingerprint or voice, are used to verify their identity.

CCN-CERT BP/28: Recommendations on Secure Development

Authentication is the
verification of the
identity of a user or
device in order to grant
access to its resources
or information

11

3.2. Authentication methods

3.2.1. Basic authentication

Basic authentication is a network authentication method. In this au-
thentication method, the user provides a username and password in
clear text form (base64) and is therefore considered an insecure form
of authentication. Other methods, such as two-factor authentication or
authentication based on digital certificates, are recommended.

RISKS

◗	 MitM (Man-in-the-Middle) attack: authentication information
is sent in clear text form, which means that it could be easily
intercepted and read by anyone with access to the decrypted
information on the network.

◗	 Key reuse: If the same password is used for multiple sites or
systems, an attacker who obtains the password through basic
authentication can use it to access other protected resources.

◗	 Brute-force or dictionary attack: This type of authentication
does not provide adequate protection against these attacks,
where an attacker attempts to guess passwords through the
use of automated programs.

◗	 Weak authentication: does not allow a user to prove his identi-
ty in a secure and reliable way, preventing the implementation
of stronger security measures, such as two-factor authentica-
tion or authentication based on digital certificates.

3.2.2. Authentication via forms

Forms-based authentication is a type of password-based authenti-
cation for a website. In this authentication method, the user provides
his or her username and password through a form on a web page. The
web server verifies the authentication information received and if it is
correct, it will allow the user access.

Forms authentication can be a secure form of authentication if appro-
priate measures are used to protect the authentication information,

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

12

such as encryption of information in transit and the use of strong pass-
words. However, it also presents some risks, such as the possibility of
an attacker obtaining the authentication information through social en-
gineering techniques or through the use of brute force software.

RISKS

◗	 MitM (Man-in-the-Middle) attack: authentication information
could be intercepted and used to access the protected re-
source if appropriate techniques are not used to protect the
information such as encryption of communications or the use
of strong passwords.

◗	 Key reuse: If the same password is used for multiple sites or
systems, an attacker who obtains the password through forms
authentication can use it to access other protected resources.

◗	 Brute-force or dictionary attack: also, does not provide ade-
quate protection against these attacks, where an attacker at-
tempts to guess passwords using automated programs.

◗	 Weak authentication: does not allow a user to prove his iden-
tity in a secure and reliable way, preventing the implementa-
tion of stronger security measures, such as two-factor
authentication or authentication based on digital certificates.

3.2.3. Implicit authentication

The user does not have to explicitly provide credentials to access a
protected resource. Instead, other forms of identification are used,
such as the user's IP address, information stored in a cookie or a to-
ken. It is a type of network or token-based authentication depending
on the way chosen to provide this identification.

The most secure way to use this method is to use a cryptographic
hash based on it as a password to obtain a token that is sufficiently
strong and long to make it useless to use a brute force attack against
it. The server compares the token received with the token it has calcu-
lated and stored for the user requiring access.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

13

RISKS

◗	 Unauthorised access: If information such as the user's IP ad-
dress is used to determine whether the user has access to a
protected resource, an attacker can spoof this information
and gain unauthorised access to the resource.

◗	 Unauthorised access: If cookies are used to store authentica-
tion information, an attacker can gain access to the cookie and
use it to access the protected resource.

◗	 Brute force or dictionary attack: where sufficiently strong en-
cryption algorithms, such as MD5, have not been used, it could
be vulnerable to such attacks.

◗	 Weak authentication: does not allow a user to prove his identi-
ty in a secure and reliable way, preventing the implementation
of stronger security measures, such as two-factor authentica-
tion or authentication based on digital certificates.

3.2.4. Autenticación de cliente HTTP

A type of network-based authentication in which a cryptographic key
pair, a public key and a private key, is used to verify the identity of a
user or device. The public key is used to encrypt the information and
the private key is used to decrypt it. The user sends a digital certifi-
cate containing his public key for the server to encrypt the content
and then uses his private key to decrypt it.

Authentication by public key certificate is considered one of the most
secure forms of authentication, as it allows a user to prove his identity
in a reliable and secure way. This is provided that the encryption algo-
rithm is sufficiently strong for this authentication method to be truly
secure. Typically, this method is used for HTTPS (HTTP over SSL/
TLS) communications. The only negative to this method is that it can
be more complicated and costly to implement than other forms of
authentication.

The client's public key certificate is issued by a trusted entity, such as
a Certification Authority (CA), which also provides an identification for
the bearer.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

Authentication by
public key certificate
is considered one of
the most secure forms
of authentication, as it
allows a user to prove his
identity in a reliable and
secure way

14

RISKS

◗	 Unauthorised access: If an attacker manages to obtain a user's
private key, he can use it to gain unauthorised access to that
user's protected resources.

	 If a fake certificate is issued with a fake public key, it could be
used to gain unauthorised access to protected resources.

◗	 MitM attack: by intercepting a certificate in transit, it could be
used to access protected resources in an unauthorised manner.

◗	 Tampering with an SSL certificate: the implementation of cer-
tificates that have not been verified by a trusted CA or self-
signed certificates that could provide a false sense of security

3.2.5. Windows Authentication

A type of password-based authentication in which the identity of a
user attempting to access a computer or resource protected by MS
Windows is verified. It is done by using a username and password,
which are verified against information stored on an authentication
server or in a local directory. MS Windows uses two (2) authentication
protocols Kerberos and NTLM.

Kerberos uses a centralised authentication server and encrypted keys
to securely verify the identity of users and NTLM uses the computer's
local file system.

In a Windows NT domain or Active Directory environment, user au-
thentication is performed by using a centralised authentication serv-
er. When a user attempts to log in, his or her computer sends an
access request to the authentication server and verifies the user's
identity using the credentials stored in the Active Directory. If the cre-
dentials are valid, the authentication server issues an access ticket
allowing the user access.

This authentication method is most suitable in corporate environ-
ments (Intranet) where centralised control over access to network
resources is required. In addition, by using an Active Directory, it is
possible to centrally manage user accounts and their access permis-
sions to different network resources.

There are quite a few security risks with this authentication method,
many of them dependent on the security policies that have been set
by the MS Windows server administrator.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

User authentication
is performed by
using a centralised
authentication server

15

RISKS

◗	 Dictionary attacks: these are based on guessing passwords by
using programs that attempt common combinations of letters
and numbers.

◗	 Brute-force attacks: attempt to guess a user's password by
using programs that generate and test combinations of char-
acters until the correct one is found.

◗	 MitM attacks: Intervene the communication between the user
and the authentication server in order to obtain the user's cre-
dentials.

◗	 Replay attacks: capture and reuse valid login tickets issued by
the authentication server, which would allow an attacker to
gain access without having to know the user's password. MS
Windows operating systems include security measures that
prevent the reuse of access tickets.

◗	 Phishing attacks: these are based on sending fake emails that
appear to come from a trusted source with messages that use
social engineering techniques in order to obtain a user's cre-
dentials.

◗	 Software vulnerabilities: MS Windows operating systems and
other software used for authentication contain vulnerabilities
that can be identified and exploited by attackers.

◗	 Human security failures: mistakes or oversights by users,
such as using weak passwords, sharing their credentials or al-
lowing them to be discovered.

3.2.6. Passport Authentication

Microsoft Passport is an authentication service used by some Win-
dows systems and Microsoft applications to verify the identity of us-
ers. This service uses a Microsoft account, such as an Outlook account
or a Skype account, to verify the user's identity.

It is based on the use of one-time credentials, which are sent to the
authentication server instead of the user's password. This prevents
attackers from guessing the user's password by using brute force or
dictionary techniques. In addition, it uses encryption to protect against
the risk of MitM attacks.

Starting with MS Windows 10, the Passport system has evolved using
two-factor authentication. One is device registration and the other is
biometric authentication using a gesture (Windows Hello) or a PIN.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

Microsoft Passport is an
authentication service
used by some Windows
systems and Microsoft
applications to verify the
identity of users

16

RISKS

◗	 Dependence on a Microsoft account: To use Microsoft Pass-
port, you must have a Microsoft account.

◗	 Software vulnerabilities: Microsoft Passport may have vul-
nerabilities that could be exploited by attackers.

◗	 Phishing and human error risks: the same problems as indi-
cated for MS Windows authentication.

3.3. Potential risks

In summary, the most common threats and risks due to lack of secu-
rity authentication controls in applications or insufficiently secure
authentication methods are:

	 Brute-force attacks: using programmes that generate and test
combinations of characters to guess users' passwords and
gain access to their accounts. If passwords are weak or easy to
guess, these attacks could be successful.

	 Dictionary attacks: using programs that attempt to guess pass-
words by using lists of words most commonly used as pass-
words using variations with letters and numbers. If the passwords
are weak or typical, these attacks may succeed in less time.

	 MitM attacks: if communications are intercepted, credentials,
token or access ticket could be obtained (replay attack). If, in
addition, communications are insecure or clear text forms of
authentication are used, attacks could be more successful.

	 Replay attacks: once an attacker has obtained an access tick-
et, it could be reused to gain access.

	 Software vulnerabilities: operating systems and applications
used in authentication may have vulnerabilities that can be ex-
ploited by attackers.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

17

	 User enumeration: the attacker could find registered users on
the system by proving identities and analysing server respons-
es, either by response time or error messages.

	 Spoofing: obtaining credentials by impersonating the authenti-
cation server, making the victim believe that they are in the
right place to enter their credentials to gain access. The service
could even forward the information to the real server and redi-
rect it authenticated so that the victim does not notice the de-
ception.

	 Authentication bypass: includes techniques that allow authen-
tication by bypassing the associated security measures. For
example, access to a user account by code injection.

	 Identity theft: this is when the attacker obtains the victim's
identity and uses it to perform some actions. This can be done,
for example, by stealing a session cookie from the victim.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

18

3.4. Security recommendations

	 Ensure that passwords are not stored in a readable format, so
that if the system or resource containing the passwords is
compromised, the malicious user is still unable to use them. A
good method could be the use of functions that guarantee the
irreversibility of the operation, such as the use of strong hash
functions.

	 Ensure that each page of the application has a logout link, that
the session expires when the user logs out, and that the session
expires after a reasonable period of non-activity.

	 Never expose credentials in the URL.

	 When using forms, use POST methods for sending information
between the client and the server.

	 Using multi-factor authentication to increase security for opera-
tions with access to sensitive resources or publicly accessible
applications.

	 Use two-factor authentication to the user for critical functions in
the application, such as changing passwords or accessing par-
ticularly sensitive resources.

	 Implement account lockout after three (3) failed login attempts
and a way to contact the administrator to unlock the account.

	 Implement CAPTCHA to mitigate brute force attacks on appli-
cations exposed on the internet.

	 Avoid enumeration of users, providing generic error messages
in case of authentication failure, such as "The user and/or pass-
word provided are not correct".

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

19

	 Avoid enumeration of users by providing different response times
in case of non-existent user or incorrect password. It is required
to include random timeouts in both cases so that it is impossible
to recognise the cases by measuring response times.

	 Avoid enumeration of users in password recovery procedures
that require entering the username.

	 Disable the "auto-complete" attribute of the password field in
the application, as it is enabled by default.

	 Enforce password complexity requirements set by policy or
regulation, and ensure that these requirements follow mini-
mum security rules such as:

	 ◗	� It should be a minimum of eight (8) characters and a sensi-
ble maximum.

	 ◗	� It must contain at least three (3) of the following characters:

		 •	 �A capital letter.

		 •	 �A lower case letter.

		 •	 �A number.

		 •	 �A special character.

	 �Not to persistently store the authentication cookie on the cus-
tomer's computer, and not to use it for other purposes such as
personalisation.

	 �Ensure that the session is different each time a user has suc-
cessfully logged in to the application.

	 �Record all successful and unsuccessful authentication at-
tempts without exposing the key used.

	 �Recording malicious access attempts in a specific security log:
Detection of multiple failed authentication attempts, detection
of injection attempts, such as SQL or LDAP, detection of multi-
ple users for the same IPs, etc.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

Enforce password
complexity requirements
set by policy or
regulation, and ensure
that these requirements
follow minimum security
rules

20

3.5. Example

This example creates a hash and salt for a password by calling getSalt-
edHash(String password). This method will return a string containing
the salt and hash separated by a | (pipe).

To check if a given password is correct, call check(String password,
String stored), passing the password being checked along with the
stored hash/salt. This method will return true if the password is correct.

It is important to use SecureRandom to
generate the salt in a secure, random and
unique way for each password. A suffi-
ciently high number of iterations is used
for the hash calculation (10000 in this
example) to increase security and make
it more difficult for brute force attackers
to calculate the hash of a given pass-
word. It is also important to use a secure
hash function such as SHA-512, which is
resistant to collision attacks and is rela-
tively fast to compute.

3.6. References	 �Java Secure Authentication:
https://docs.oracle.com/javaee/5/tutorial/doc/bncbe.html#bncbn [4]

	� Python: Library to implement OTP:
https://pypi.org/project/pyotp/ [5]

import java.security.MessageDigest;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.Base64;

public class SecureAuth {

 private static final int ITERATION_COUNT = 10000;
 private static final int KEY_LENGTH = 512;

 public static String getSaltedHash(String password) throws IllegalStateException {
  byte[] salt = SecureRandom.getInstanceStrong().generateSeed(KEY_LENGTH / 8);
  return Base64.getEncoder().encodeToString(salt) + "|" + hash(password, salt);
 }

 public static boolean check(String password, String stored) throws IllegalStateException{
  String[] saltAndPass = stored.split("\\|");
  if (saltAndPass.length != 2) {
   throw new IllegalStateException(“Use '<salt>|<hash>'”);
  }
  byte[] salt = Base64.getDecoder().decode(saltAndPass[0]);
  String hashOfInput = hash(password, salt);
  return hashOfInput.equals(saltAndPass[1]);
 }

 private static String hash(String password, byte[] salt) throws IllegalStateException {
  MessageDigest md = MessageDigest.getInstance("SHA-512");
  md.update(salt);
  byte[] hashedPassword = md.digest(password.getBytes("UTF-8"));
  int iterations = ITERATION_COUNT;
  while (iterations-- > 0) {
   hashedPassword = md.update(hashedPassword);
  }
  hashedPassword = md.digest(hashedPassword);
  return Base64.getEncoder().encodeToString(hashedPassword);
 }
}

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

21

4. Authorisation

Authorisation is responsible for determining what actions a user or sys-
tem is allowed to perform, therefore, authentication is a prerequisite for
authorisation, as it is necessary to verify the identity of a user or system
before determining what actions they are allowed to perform.

It is the second security control after authentication and is closely
linked to authorisation over the business functions of the application.

4.1. Potential risks

There are several vulnerabilities that can arise in the absence of ade-
quate security controls when implementing authorisation. The follow-
ing are some of the main and common risks identified in applications
due to lack of security controls on authorisation.

	 �Unauthorised access: if authorisation is not properly imple-
mented, it may result in unauthorised users having access to
resources and operations to which they should not have per-
mission.

	 �Vertical privilege escalation: one user can access the func-
tionality of another user with higher privileges.

	 �Horizontal privilege escalation: a user can access the func-
tionality of another user with the same level of access.

CCN-CERT BP/28: Recommendations on Secure Development

22

	 �Disclosure of sensitive information: an application gives more
information than necessary to the user and could be used by
an attacker for malicious purposes.

	 �Privacy breach: if the attacker ends up having access to other
users' privacy-related data.

	 �Identity theft: this is when the attacker obtains the victim's
identity and uses it to perform some actions.

	 �Data theft: is when an attacker illegitimately obtains data,
whether confidential or not.

	 �Service availability: unauthorised access to critical elements
of the application could allow an attacker to disrupt or damage
the service.

	 �Data manipulation: an attacker is able to intercept and manip-
ulate the data exchanged between the client and the server.

	 �Log modification: when an attacker manages to access and
edit application or system logs, compromising the integrity of
log traceability.

	 �Path traversal: the attacker moves through the server's file
system, beyond the scope in which he is supposed to act and
outside the context that would require authorisation.

	 �Business logic: if the application was not well designed, it
could happen that, if a user does not follow the normal applica-
tion logic for his business functions, he could encounter unex-
pected behaviour that could be exploited to perform operations
that should not have been allowed.

CCN-CERT BP/28: Recommendations on Secure Development

4. Authorisation

23

4.2. Security recommendations

	 �Ensure the implementation of the principle of least privilege:
users have restricted access only to the functions and data
they really need to perform their work normally.

	 �Assign permissions and privileges to application roles, never
directly to users. Users must have roles and their privileges are
taken from these roles.

	 �Check that the access to confidential records is protected, so
that only authorised objects or data accessible to each user
can be reached (e.g. by protecting against users manipulating
a parameter to view or modify another user's account).

	 �Verify that browsing in the directory is disabled, unless deliber-
ately enabled. In addition, applications should not allow the
discovery or disclosure of files or directories, such as Thumbs.
ds, .DS_Store, .git or .svn folders.

	 �Ensure that the access control rules are applied on the server
side.

	 �Verify that all the user attributes, data and policy information
used by access controls cannot be manipulated by end-users
unless specifically authorised.

	 �Verify that there is a centralised mechanism (including librar-
ies calling external authorisation services) to protect access
to each type of protected resource.

	 �Ensure that the application uses strong anti-CSRF random tokens
or implements another transaction protection mechanism.

CCN-CERT BP/28: Recommendations on Secure Development

4. Authorisation

Check that the access
to confidential records
is protected, so that
only authorised objects
or data accessible
to each user can be
reached

24

	 �Record all the operations on sensitive data in a specific secu-
rity log containing at least: the date/time of the operation, the
operation (read, create, delete, update), the name of the data,
the process, function or service that generated the operation,
the user, the role of the user who has the privilege for the oper-
ation, the result of the operation (whether it was successful or
not) and an optional message about the result of the operation
(in case of error).

4.3. Example
Using the Spring Security framework which provides a comprehensive
set of security features, including authentication and role-based au-
thorisation. Annotations are used to control the access to certain
parts of your application.

In the following example, the listUsers method shall only be accessible
to users with the ROLE_ADMIN role.

4.4. References	 �Java. Secure Authorisation:
https://docs.oracle.com/en/java/javase/19/security/java-authentication-and-
authorization-service-jaas1.html [6]

	� Python. Simple Authorisation Secure Library:
https://pypi.org/project/python-authorization/ [7]

@PreAuthorize("hasRole('ROLE_ADMIN')")
@GetMapping("/admin/users")
public String listUsers(Model model) {
 // Código para listar a los usuarios
}

CCN-CERT BP/28: Recommendations on Secure Development

4. Authorisation

25

5. Session
management

A session is an active connection between a user and the system.
Session management consists of determining actions on sessions
that serve to ensure the security of authorisation, integrity and privacy
of information between the user and the system. Each authenticated
and authorised access to the system creates a new session in the
system that stores temporary information about the user's unique op-
erations and business logic in the application for the duration of the
user's access. Each session is identified by a unique identifier.

From this point onwards, the way in which the user identifies himself
to the server for all other operations may vary:

	 �Through cookies: this is the most common and insecure
mechanism. A unique identifier is generated in the browser
cookie that is used to identify the user's session on the server
as an active, authenticated session. It is more insecure because
it requires delegating responsibility for cookie persistence to
more or less secure browser implementations.

	 �Through tokens: this is equivalent to the previous system
where the token is an access identifier that allows access to
the system after the token has been associated with the corre-
sponding session ID. This token usually travels in the request
headers. It is more secure because it allows access tokens to
be modified from time to time, by means of a token exchange,
without the need to modify the session ID, which would always
be kept safe on the server side.

CCN-CERT BP/28: Recommendations on Secure Development

Session management
consists of determining
actions on sessions
that serve to ensure the
security of authorisation,
integrity and privacy of
information between the
user and the system

26

5.1. Security aspects

The first basic aspects to consider in session management security are:

	 �Securely authenticate users to ensure that only authorised
persons have access to the system.

	 �Appropriately authorise the user who has obtained access.

	 �Encrypt communications between client and server with a ro-
bust algorithm.

5.1.1. Client-side sessione

The client-side session is something that is often given little or no at-
tention and is as important as or more important than the session that
is created on the server. If this session does not exist, the following in-
secure situations, among others, could be created by way of example:

◗	 �A user finishes his task in the application, opens another tab and
switches to another task. The server session ends, but the client
does not know that the session has ended as long as it does not
generate activity in the forgotten window. This tab could expose
sensitive information that anyone tampering with the device
could see and copy without any activity.

◗	 �A user has to fill in a form with a lot of information that takes time
to complete, and may even be filled in from queries to other sourc-
es that require their attention. If the timeout of a server session
was 30 minutes due to inactivity, after 2 hours filling in the form,
the user would press submit and as the session expired, all his
work is lost and he would find himself with a login on the screen
asking for credentials for a new access. The client had activity for
2 hours, but the server could not perceive it.

In addition, implementing the session concept on the client side would
allow expiry warnings to be displayed some time before they occur.
The client-side session must therefore meet some minimum security
requirements:

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

27

◗	 ��The persistent information of the client session ID must be
stored associated to the tab, so that when the tab disappears,
all the information associated to this session disappears. This
can be implemented through code within the page itself or
through the sessionStorage object.

◗	 ��Persistent client session information must always be deleted
at the login screen and created when the session is created on
the server, not before.

◗	 ��Allow the client session to make empty transactions against the
server simply to tell the server that the session should remain
active and not expire. This behaviour should be on-demand on
screens that require a lot of client-side attention, never as a de-
fault behaviour.

◗	 ��As with server sessions, they should control the maximum in-
activity time with a similar or lesser time than server sessions.
In case of inactivity on the client side, the client session should
launch a logout request to the server and redirect to the login
screen. Setting an absolute maximum session timeout may
also be advisable.

◗	 ��The information stored in these client sessions should be mini-
mal and necessary for the navigation logic and should not con-
tain sensitive information. It could contain the server access
token to avoid dragging it in all requests (if any).

◗	 ��Login timeout, to prevent session fixation attacks.

◗	 ��Force client and server logout on browser window or tab close
events.

5.1.2. Session ID

The minimum security controls associated with the session ID are:

◗	 Any session identifier must be unique, sufficiently random and
of a suitable length as provided by a cryptographically secure
hash from a random number, with a significant key length.

◗	 The random number generator to create the session ID must
be a secure random number generator.

◗	 IDs must be validated by the server to ensure that they are in
valid format and are part of active and valid sessions.

◗	 Session IDs must not be registered. If necessary for session
traceability, use a different ID, never use the ID used for session
identification in client-server traffic.

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

28

◗	 A new session ID must be generated at each login or when
there is a change in the user's privilege level, to prevent session
fixation attacks.

◗	 The storage and monitoring of active session IDs must be
secure to prevent unauthorised access by unauthorised per-
sonnel.

5.1.3. Logging out

When a server session is closed, the following security controls must
be taken into account:

◗	 �Always redirect the user to the login page.

◗	 �Ensure that the customer will delete all cookie or access token
information.

◗	 �Ensure that the client will delete all information from the client
session (if applicable).

◗	 �Logging logouts in the security register

5.1.4. Expiry of the session

The minimum security controls on session expiry are:

◗	 �Every session should have a reasonable maximum lifetime in
case of inactivity to avoid the session remaining permanently
active.

◗	 �When the server session expires you must delete all informa-
tion related to this session.

◗	 �Record session expirations in the security log.

◗	 �Set an absolute maximum time for the duration of a session.

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

29

5.1.5. Session management in mobile applications

For usability reasons, mobile applications often require sessions to last
longer than web applications. Recommendations for managing ses-
sions in mobile applications are:

◗	 �Use tokens that can be removed if the device is lost or stolen.

◗	 �The session timeout of the mobile application shall be configured
and expire depending on the sensitivity of the application.

◗	 �Use a server-based data store to facilitate the use of the session
on multiple pages.

◗	 �Never use a device identifier as a session token.

5.2. Potential risks

	 �Session prediction: focuses on predicting session ID values
that allow an attacker to bypass an application's authentication
scheme.

	 �Session hijacking: The session hijacking attack consists of ex-
ploiting the web session control mechanism, usually managed
by a session token.

	 �Session fixation: this consists of obtaining a valid session ID
(e.g. by establishing a connection to the application), inducing
a user to authenticate with that session ID, and then hijacking
the user's validated session to learn the session ID used.

	 �Session spoofing: when the attacker gains the identity of an-
other entity to commit some kind of fraud. For example, an at-
tacker who generates a malicious website under the guise of a
legitimate bank to deceive victims through phishing.

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

Use a server-based
data store to facilitate
the use of the session
on multiple pages

30

5.3. Security recommendations

	 �It is crucial to ensure that the session ID is never exposed in
unencrypted traffic.

	 �Implement secure headers with directives such as cache-con-
trol or strict-transport security.

	 �Check that sessions are invalidated when the user logs out.

	 �Sessions must expire after a specified time of inactivity.

	 �Ensure that all pages requiring authentication have easy and
user-friendly access to the logout functionality.

	 �Verify that the session ID never appears in URLs, error messag-
es or logs.

	 �Ensure that every successful authentication and re-authentica-
tion generates a new session and a new session ID, destroying
the old one.

	 �Check that the session ID stored in the cookies is set using the
HttpOnly and Secure attributes.

	 �Set the Path attribute of session cookies appropriately to pre-
vent access to other domains.

	 �Check that the application keeps track of all the active sessions
and allows the user to end sessions selectively or globally from
their account.

	 �In the case of high-value applications, ensure that the user is
required to close all the active sessions if the password has
just been successfully changed.

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

It is crucial to ensure
that the session ID
is never exposed in
unencrypted traffic.

31

	 �Limit access to protected URLs, roles, application data, user
attributes and access configuration data only to authorised
users.

	 �Record in a security log all the sessions that are created, man-
ually closed or expired from the client or from the server identi-
fied by the username and the server's internal session ID (not
shared with the client) including the date/time of the event.

5.4. Example

In Java, session management can be performed by using the javax.
servlet.http.HttpSession interface. This interface provides methods to
store and retrieve session attributes, set and get the session timeout,
and invalidate the session.

To use the HttpSession interface, an instance must first be obtained:

HttpSession session = request.getSession();

�Then, the interface methods can be used to carry out session man-
agement:

session.setAttribute(“user”, “John”);

To retrieve a session attribute:

String user = (String) session.getAttribute("user");

To set the session timeout time (in seconds):

session.setMaxInactiveInterval(3600);

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

32

To invalidate the session:

session.invalidate();

It is important to note that to ensure the security of session manage-
ment, secure HTTPS cookies must be used and unique and unpredicta-
ble session identifiers must be generated. Also make sure to validate
the request and the session state for each request to avoid session
spoofing.

import java.security.MessageDigest;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.Base64;
...

SecureRandom random = new SecureRandom();
byte[] bytes = new byte[32];
random.nextBytes(bytes);
MessageDigest digest = MessageDigest.getInstance("SHA-256");
byte[] hashedSessionId = digest.digest(bytes);
String sessionId = Base64.getEncoder().encodeToString(hashedSessionId);

Cookie sessionCookie = new Cookie("SESSIONID", sessionId);
sessionCookie.setHttpOnly(true);
sessionCookie.setSecure(true);
sessionCookie.setMaxAge(3600); // expira en 1 hora
response.addCookie(sessionCookie);

5.5. References	 �OWASP. Secure Session Management:
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_​
Cheat_Sheet.html [8]

	� Java. SpringSession Framework:
https://www.baeldung.com/spring-session [9]

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

33

6. Validation of input
and output data

It is one of the most important critical areas of application security. Most
application vulnerabilities arise from incorrect or insufficient validation
of input or output data that is exploited for attacks such as cross-site
scripting, general injections, exposure of sensitive data or DoS.

Although validation of output data is not a very common activity
among developers, it is equally important, and could be exploited by
malicious users if adequate security measures were not included. The
output returned by an application could be used to perform the same
types of attacks, albeit in a more sophisticated way.

Implementing validations of all input and output data does not guaran-
tee that the application will be free of vulnerabilities as such validations
may be insufficient and may not have taken into account other types
of functional or business logic issues that could affect the normal be-
haviour of the application. An example of this would be validating a
numeric input where it is checked that it is a number, that it is positive
and that it is not 0. However, if the application uses it within an iterative
loop, it could be called with a huge value and put the application in an
almost infinite loop; which would be a DoS attack.

CCN-CERT BP/28: Recommendations on Secure Development

Most application
vulnerabilities arise
from incorrect or
insufficient validation
of input or output data
that is exploited for
attacks such as cross-
site scripting, general
injections, exposure of
sensitive data or DoS

34

6.1. Validation Techniques

6.1.1. Sanitisation

It is a process for converting data that has more than one possible rep-
resentation into a standard, canonical or normalised format, reducing
the input/output to a single converted and/or reduced fixed form. This
technique alone avoids many validation problems and many types of
attacks.

There are libraries for each type of language that already incorporate
sanitisation methods.

6.1.1.1. SANITISATION OF ROUTES	 All the file or directory paths are normalised.
	 �For example, a UNIX path such as /home/user/myFile.txt, could be defined

as /var/log/.../.../home/user/myFile.txt. This could be used by a malicious
user to browse the file system and obtain unauthorised information. To avoid
this, the path is canonicalised to a fixed form or the "../" and "./" substrings are
removed from the path directly.

6.1.1.2. SANITISATION OF SPACES	 �All the input parameters remove spaces, tab characters or other white char-
acters (160) before and after the data.

	� Some also choose to remove all white characters within the data and convert
them directly to a space code (32).

6.1.1.3. SANITISATION OF CHARSET	 �It is verified that all the characters entered in the data correspond to the
expected charset. Those that do not, are deleted or transformed to a white
space. Characters that may arrive encoded as "0xA0", "/xA0", "%A0", etc. are
taken into account to be decoded before being processed.

6.1.1.4. CASE SANITISATION	 �All the characters are converted to upper or lower case, as required by the
defined parameter.

6.1.2. Data type

Validates that the received data is of the expected type with the appro-
priate format. Data types can be simple or complex depending on the
definitions implemented in the application. Simple data types would
be, for example: integer, decimal, boolean, boolean, character string,
and complex data types would be e-mail, NIF, address, name, name,
CP, date, time, URL, etc..

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

35

6.1.3. Format

It allows to validate data with more or less complex and variable for-
mats but which can perfectly well be defined within a regular expres-
sion. Many of the complex data types validated in the previous point are
likely to be done using this technique.

The only thing to keep in mind is to create a regular expression so
complex that it could be vulnerable to a ReDoS attack. To ensure that
this does not happen, you should validate the regular expression with
a tool that guarantees its security and suitability, such as RegEx 101
or RegEx Testing.

6.1.4. Minimum and maximum sizes

Validates that the size (length) of the data exceeds a minimum number
of characters or does not exceed a maximum number of characters. This
check would prevent sending data so large that the application would be
"frozen" simply processing the input.

6.1.5. Minimum and maximum values

Unlike the previous point, this validation applies to numeric values that
must be within a range of maximum and minimum.

6.1.6. White list

Validates that the data is within a list of prefixed data. This validation is
widely used on data that is part of enumerations..

6.1.7. Blacklist

Validates that the data is not found within a list of prefixed data. This
type of validation is often insufficient and dangerous because it can
hardly cover all malicious possibilities.

However, it can be useful when deciding to reject texts containing of-
fensive words that exist within a blacklist.

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

36

6.2. Flowchart

The following diagram is an example to illustrate the workflow for vali-
dating free text values. It includes four (4) input values that are checked
against some simple requirements. When a value does not satisfy any
requirements, the input data must be rejected.

Check the minimum and
maximum length of the

entry value

Do the expected
values satisfy the

requisites?

OK: 2, 3, 4
Failed: 1

Are there any non-valid
characters?

OK: 3
Failed: 2, 4

Check the minimum and
maximum length of the

entry value

Check the non-valid
characters

Check the non-valid
characters in 2, 3 and 4

METHODOLOGY

Minimum length: 5
Maximum length: 25
Invalid characters:

#, @, etc

Requirement

EXAMPLE

Scenario

Validation of the strings
value of:

1. This is really impressive
2. <script> Test </script>
3. Policy 56
4. Appliance

Correct validation Correct validation
(Policy 56)

YES

YES

NO NO

NO NO

YES

YES

Abort the function
and close it in a

safe way

Show adequate error
messages (for example,
“The text “This is really

impressive” is not valid)

Show adequate error
messages (for example, “The

text 2 and 4 are not valid”)

Abort the function
and close it in a safe

way

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

37

6.3. Potential risks

Data validation is the source of many vulnerabilities that an attacker
can exploit. The following are some of the vulnerabilities related to in-
sufficient or missing input validation:

	 �Cross-Site Scripting: is a type of attack that allows a malicious
user to inject code into the victims' web browser.

	 �SQL Injection: exploits application programming flaws at the
input validation level to perform operations on a database ille-
gitimately.

	 �LDAP Injection: consists of injecting arbitrary LDAP queries to
access forbidden data or even obtain additional privileges.

	 �Log Injection: consists of injecting execution commands into
the system or any other type of problem using the log system
that records data from input parameter information.

	 �XEE Injection: An XPATH injection is the injection of arbitrary
XML code with the intention to access data that should not be
accessed or to obtain information about the XML tree struc-
ture.

	 �XML bomb: This attack attempts to overload XML by exceed-
ing the memory resources of an application to cause a denial
of service.

	 �DoS, DDoS or ReDoS: denial of service attacks due to system
error in processing unvalidated input causing system failures.

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

Data validation is
the source of many
vulnerabilities that an
attacker can exploit

38

6.4. Security Recommendations

	 �Validations should always be performed on the server side.
Client-side validations can also be useful but are only recom-
mended.

	 �Failing that, use standard input validation mechanisms provid-
ed by technology-specific libraries (Spring Validator, etc.).

	 �Fully cover data validation through validation schemes or
standard mechanisms that ensure data entry through: sani-
tisations, data type, format, lengths, values, whitelists, black-
lists, etc.

	 �Checking that structured data is strongly typed and validated
according to a defined schema, including allowed characters,
length and pattern, e.g. credit card or telephone numbers, or
validating that two related fields are reasonable, such as vali-
dating suburbs and postcodes.

	 �Verify that unstructured data is sanitised to impose generic se-
curity measures, such as allowed characters and length, and
avoid potentially harmful characters.

	 �Ensure that all unreliable input is properly sanitised using a
sanitisation library.

	 �Avoid displaying sensitive information because of a validation
error of a received parameter.

	 �Accept only the expected data at each entry point of the appli-
cation that comes from the user, from the end process of all
input fields, forms, URLs, application cookies, etc. Any unex-
pected data should be rejected.

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

Validations should
always be performed on
the server side. Client-
side validations can also
be useful but are only
recommended

39

	 �Verify that server-side input validation errors result in rejection
of the request.

	 �Ensure that all database queries are protected using parame-
terised queries to prevent SQL injection.

	 �Check that the application is not susceptible to command in-
jection.

	 �Verify that all string variables located within HTML or other
web client code are correctly hand-coded in context or use
templates that automatically encode the context to ensure that
the application is not susceptible to cross-site scripting (XSS)
reflected, stored or DOM.

	 �Check that the application does not contain mass parameter
assignment vulnerabilities (AKA automatic variable binding).
Ensure that all input data is validated, not just HTML form
fields, but all input sources such as REST requests, query pa-
rameters, HTTP headers, cookies, batch files, RSS feeds, etc.,
using whitelists, lesser forms of validation such as greylists
(which remove the known bad strings) or blacklists (which re-
ject bad input).

	 �Verify that the application restricts XML parsers to use only the
most restrictive settings possible and ensure that dangerous
functions, such as external entity resolution, are disabled.

	 �Verify that deserialisation of unreliable data is prevented or
largely protected when deserialisation cannot be avoided.

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

Verify that server-side
input validation errors
result in rejection of the
request

40

6.5. Example

In Java Spring, annotations are used to
validate input parameters to methods
and allowed values in the members of
a class:

The @Valid annotation is used in conjunction with a validation object to
validate the input parameters of a controller method.

The @NotBlank and @Email annotations to indicate that the name field
must not be blank and that the email field must be in a valid email ad-
dress format.

@PostMapping("/users")
public ResponseEntity<User> createUser(@Valid @RequestBody User user) {
 ...
 return ResponseEntity.ok(user);
}

public class User {
 @NotBlank
 private String name;

 @Email
 private String email;

 ...
}

6.6. References	 �OWASP. Parameter Validation:
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.
html [10]

	� OWASP. Data Validation - ESAPI Library:
https://owasp.org/www-project-enterprise-security-api/ [11]

	� Validation of Web Forms in Javascript:
https://www.tutorialspoint.com/javascript_form_validation_web_application/index.
asp [12]

	� Java. Spring Boot Validation:
//www.baeldung.com/spring-boot-bean-validation [13]

	� XSS Prevention:
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_
Cheat_Sheet.html [14]

	� Python. Colander Validation: https://pypi.org/project/colander/ [15]

	 Python. Cerberus Validation: https://docs.python-cerberus.org/en/stable/ [16]

	 Python. Validation Schematics: https://schematics.readthedocs.io/en/latest/ [17]

	 Python. Schema Validation: https://pypi.org/project/schema/ [18]

	 Python. �JSON Schema Validation: https://pypi.org/project/jsonschema/ [19]

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

41

7. Error management

Error handling is about how to avoid displaying relevant or sensitive
information to users that could be used to launch other types of sophis-
ticated attacks against the application and how to handle uncontrolled
errors within the application to provide safe exits that do not allow un-
expected situations to be exploited by malicious users.

7.1. Confidentiality
of messages

If the applications have not implemented proper error handling, they
may inadvertently reveal information about their configuration, internal
state, debugging messages, sensitive data, or even violate privacy.

Other ways of disclosing information include, for example, the time
taken to process certain transactions, or offering different codes for
different inputs.

All this information could be exploited to launch, or even automate, very
powerful attacks, which makes good error handling essential.

CCN-CERT BP/28: Recommendations on Secure Development

If the applications
have not implemented
proper error handling,
they may inadvertently
reveal information about
their configuration,
internal state, debugging
messages, sensitive
data, or even violate
privacy

42

POTENTIAL RISKS The following are the most common potential risks if the error handling
is not properly implemented within the application:

◗	 ��Leakage of sensitive information: server version, database engine,
sensitive documents, file structure, etc.

◗	 ��Denial of service: when errors forced through abuse can cause
system downtime.

◗	 ��Cross-site scripting: when error messages show input parameters
that have not been correctly escaped.

7.2. Uncontrolled errors

When situations where exceptions or errors at points in the application
could occur have not been contemplated, and do occur, the applica-
tion would cause an unexpected exit from the business logic that could
leave it in a vulnerable state to subsequent user activities.

It is therefore imperative that all transactions are fully analysed in terms
of the various exceptions that may occur and that these exceptional
outflows are dealt with appropriately.

Another way to exploit unchecked errors is when resources are not prop-
erly shut down, which can eventually cause a denial of service due to
excessive consumption of resources that are not shut down as a result
of forcing errors in the application. To avoid this vulnerability, it is essen-
tial to ensure that all resources are shut down when they are no longer
used, regardless of any errors that may appear during operations. It is
recommended to use try / finally statements to ensure the closure of
resources.

POTENTIAL RISKS The following are the most common potential risks if error handling is
not properly implemented within the application.

◗	 �Denial of service: when errors forced through abuse can cause
system downtime.

◗	 ��Bypassing business logic: when unexpected exits from the busi-
ness logic occur by forcing exceptions or uncontrolled errors.

CCN-CERT BP/28: Recommendations on Secure Development

7. Error management

43

7.3. Security recommendations

	 �Use generic error messages that do not give clues to end-users
about any sensitive aspects of the application.

	 �Use centralised exception handling.

	 �The application must handle errors without relying on server
error messages displayed to users.

	 �Any access control logic that leads to an error must deny ac-
cess by default.

	 �Analyse in detail all exceptions that may occur due to the use of
system libraries or third-party libraries in the application, han-
dle them appropriately and provide a safe exit to the applica-
tion.

	 �Use try/catch/finally to ensure the shutdown of all resources
in case of error.

	 �Log all unexpected exceptions in a specific log indicating,
among others, the date/time of the failure, the user who
caused it and the method where the failure occurred, as well as
exception information. This log should be located in a secure
environment accessible only to authorised users.

CCN-CERT BP/28: Recommendations on Secure Development

7. Error management

44

7.4. Example

The following example would be the typical code block that should be
found in any method where you want to control errors that may appear
in a code block.

Any unhandled exception within the try block will be caught by catch
from where a handled exception will be thrown. And, in either case, the
finally block will be executed to close open resources before the try or
after the try

try {
 ...
 // code that can throw an exception
 ...
} catch (Exception e) {
 // exception handling
 log.error("ERROR", e);
 throw new CustomException("ERROR", e);
} finally {
 // closure or release of open resources
 ...
}

7.5. References	 �Java. Try - Catch - Finally:
https://www.w3schools.com/java/java_try_catch.asp [20]

	� Java. Exception Handling:
https://www.baeldung.com/java-exceptions [21]

	� Error Handling Strategies:
https://dzone.com/articles/error-handling-strategies [22]

	� Python. Errors and Exceptions:
https://docs.python.org/es/3/tutorial/errors.html#errors-and-exceptions [23]

CCN-CERT BP/28: Recommendations on Secure Development

7. Error management

45

8. Secure Registration

It consists of recording the activity of applications and system events
related to security, in terms of authentication, authorisation, integrity
or confidentiality, such as failed connection attempts, authorisation
acquired by a user, accesses to sensitive data, etc., as well as possible
threats detected that can be controlled from the application: injections,
user enumeration, brute force attacks, etc. The latter is especially
important when forensic analysis of security incidents that have oc-
curred is desired.

Security records must be specially protected at the level of authentica-
tion, integrity, confidentiality, availability and traceability:

	 �Authentication/Authorisation: only identified and authorised
persons can have access to the registry.

	 �Integrity: the registry maintains an integrity signature that
ensures that it has not been tampered with at the registry level
or at the record level. This signature is updated with each new
entry in the registry.

	 �Confidentiality: sensitive registry data is tokenised, anonymised
or encrypted to prevent access to the registry by methods other
than those implemented for authorised access.

	 �Availability: records are stored with redundancy and backup
copies.

	 �Traceability/Auditability: they must be stored securely for a
retention time for audit purposes.

CCN-CERT BP/28: Recommendations on Secure Development

It consists of
recording the activity
of applications and
system events related
to security, in terms
of authentication,
authorisation, integrity
or confidentiality

46

8.1. Potential risks

	 �Information leakage: logs may contain sensitive information
about the application or system and may not have been ade-
quately protected against loopholes in access authorisation.

	 �Log forgery: an unauthorised user could modify log files, which
can lead to loss of traceability in the application or even allow
the malicious user to execute code on the system.

	 �Log deletion: a malicious user could delete logs to avoid leav-
ing traces of his crimes.

8.2. Security recommendations

	 �Do not record sensitive information such as passwords, finan-
cial information, credit cards, personal details, etc. In these
cases, use tokens, anonymisation of information or encryption.

	 �Validate the parameters of the variable components that will
make up the log entry to avoid injections and unexpected be-
haviour.

	 �Make sufficiently accurate notes for security:

	 ◗	� �Authentication attempts, especially failures.

	 ◗	� �The accesses granted with the roles associated with the user.

	 ◗	� �Access to and actions taken on sensitive data, which role
was used and by which user.

	 ◗	� �Input validation errors.

	 ◗	� �Exceptions to the system.

CCN-CERT BP/28: Recommendations on Secure Development

8. Registro seguro

47

	 ◗	� �Possible detected threats or threat attempts that can be
controlled by the application: injections, brute force attacks,
user enumeration, business logic failures, unprivileged oper-
ation attempts, path traversal attempts, etc.

	 �Use the hash functions to ensure data integrity of records.

	 �The security register must be independent of other registers
and have its own security protections in the system.

8.3. Example

Secure logging in Java can be performed
using the java.util.logging library.

import java.util.logging.Logger;

public class MyClass {
 private static final Logger log = Logger.getLogger(MyClass.class.getName());

 public void myMethod() {
 // algunas operaciones que pueden lanzar una excepción
 try {
 // código que puede lanzar una excepción
 } catch (Exception e) {
 log.severe("Ocurrió un error grave: " + e.getMessage());
 }
 }
}

8.4. References	 �Security Log. Best Practices for Logging and Management:
https://www.dnsstuff.com/security-log-best-practices [24]

	� Java. Logging:
https://docs.oracle.com/javase/7/docs/technotes/guides/logging/index.html [25]

CCN-CERT BP/28: Recommendations on Secure Development

8. Registro seguro

48

9. Cryptography

Cryptography is a technique used to protect information and commu-
nications using secret codes or keys and is an essential tool for pro-
tecting information and communications.

It is used to ensure the confidentiality, integrity and authenticity of
information and communications: confidentiality by protecting infor-
mation so that it can only be accessed by authorised persons, in-
tegrity by protecting information against unauthorised alteration and
authentication by verifying the identity of persons or systems access-
ing information.

Cryptography can be used in different ways: as encryption of sensitive
data to protect information or as a digital signature to ensure data integrity.

9.1. Use of encryption

9.1.1. Hash functions

A cryptographic hash is a mathematical function that, from a set of
data, produces a fixed amount of data called a "digest" or "hash". De-
pending on the function used, the number of data obtained may vary,
but it will always generate the same amount of data for the same func-
tion, regardless of the number of data used in the input.

CCN-CERT BP/28: Recommendations on Secure Development

Cryptography is a
technique used to
protect information and
communications using
secret codes

49

The power of cryptographic hashing is that the probability of generating
the same output data, in the same order, from a different input is very low,
very unlikely. If this were to happen, a so-called "collision" would occur,
and this effect, discovered in one of these mathematical functions,
could be exploited by malicious users for some security attacks.

A hash function is commonly used to verify the integrity of data, since
any change in the original input will be reflected in a significant change
in the resulting hash. When the hash function is fed with the data we
want to secure, the output data from the function provides us with the
verification hash. This hash could only be retrieved again with the same
function, with the same input data and in the same order.

Hash functions are used for the storage of passwords or to check the
integrity of data to ensure that it has not been modified.

9.1.2. Symmetric encryption

Symmetric encryption is a type of encryption in which the same key is
used for both encrypting and decrypting information. It is used to pro-
tect the confidentiality of information during transmission or as storage
on a device.

The main advantage of symmetric encryption is that it is fast and easy
to implement. Its main disadvantage is that both parties must share the
secret key in order to communicate securely. This can be a problem in
distributed environments, as it requires a secure mechanism to share
the key reliably.

9.1.3. Asymmetric encryption

Asymmetric encryption is a type of encryption in which two (2) differ-
ent keys, known as public key and private key, are used to encrypt and
decrypt information. The public key is used to encrypt the information
and can be shared without problems, while the private key is used to
decrypt the information and must be kept secret.

The advantages of asymmetric encryption are that the private key does
not need to be shared to establish secure communication. The public
key can be shared seamlessly and is used to encrypt the information,
while the private key is used to decrypt it. However, asymmetric encryp-
tion is slower than symmetric encryption and can be more difficult to
implement.

CCN-CERT BP/28: Recommendations on Secure Development

9. Cryptography

50

9.2. Potential risks

Information that is not encrypted or not properly encrypted is exposed
to the following risks:

	 �Exposure of sensitive information: sensitive data would be
clear to any unauthorised person.

	 �Credential theft and spoofing: sensitive password information
stolen could be used to impersonate another user and to carry
out other attacks such as spoofing.

	 �Leakage of personal data: this is data protected by country
regulations whose privacy violation could result in financial
penalties.

	 �Loss of reputation of the company: as a consequence of all of
the above.

	 �MitM (Man-in-the-Middle) attacks: if communications are not
well secured, communications could be intercepted, and the
entire data stream decrypted to obtain valuable information
that could be used for other attacks.

CCN-CERT BP/28: Recommendations on Secure Development

9. Cryptography

51

9.3. Security recommendations

	 �All sensitive information of an organisation such as pass-
words, personal data, log repositories or any other information
labelled as confidential or superior to the company must be
stored in an unreadable (encrypted) form to ensure the confi-
dentiality of the company.

	 �Check that all random numbers, random file names, random
GUIDs and random strings are generated by a random number
generator approved by the cryptographic module.

	 �Check that there is an explicit policy on the handling of cryp-
tographic keys (such as generation, distribution, revocation and
deprecation).

	 �Check that the lifecycle of cryptographic keys is correctly im-
plemented.

	 �Ensure that sensitive passwords or critical information residing
in memory are overwritten with zeros as soon as they are no
longer used to mitigate memory dump attacks.

	 �Check that random numbers are created with an appropriate
level of entropy, even when the application is under high load.

	 �Check that obsolete or weak cryptographic algorithms such as
the symmetric key DES algorithm or hash functions such as
MD5 or SHA-1 are not used due to the impossibility to guaran-
tee confidentiality.

	 �Use existing cryptographic libraries and in any case use custom
or user-created cryptographic algorithms or implementations.

CCN-CERT BP/28: Recommendations on Secure Development

9. Cryptography

All sensitive information
of an organisation
such as passwords,
personal data, log
repositories or any other
information labelled as
confidential or superior
to the company must be
stored in an unreadable
(encrypted) form to
ensure the confidentiality
of the company.

52

9.4. Example

In this example, symmetric cryptog-
raphy is used to encrypt a message
using a secret key and an initialisation
vector (IV) to protect against "key re-
use" attacks.

import java.security.SecureRandom;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;

public class AdvancedCryptographyExample {
 public static void main(String[] args) throws Exception {
  // We generate a secret key for symmetric cryptography.
  KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
  keyGenerator.init(256); // we use a 256-bit key
  SecretKey secretKey = keyGenerator.generateKey();

  // We generate an initialisation vector (IV) for symmetric cryptography
  byte[] iv = new byte[16]; // los IV típicamente tienen un tamaño de 16 bytes
  SecureRandom secureRandom = new SecureRandom();
  secureRandom.nextBytes(iv);
  IvParameterSpec ivParameterSpec = new IvParameterSpec(iv);

  // Encrypt a message using the secret key and the IV
  String message = "Este es un mensaje secreto";
  Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
  cipher.init(Cipher.ENCRYPT_MODE, secretKey, ivParameterSpec);
  byte[] encryptedMessage = cipher.doFinal(message.getBytes());

  �// We store the secret key in a secure way (e.g. using an encryption key)
  saveSecretKey(secretKey);

  �// Save the IV and the encrypted message somehow (e.g. in a database)
  saveIvAndEncryptedMessage(iv, encryptedMessage);
 }

 private static void saveSecretKey(SecretKey secretKey) {
  �// We store the secret key in some way (e.g. using an encryption key)
 }

 private static void saveIvAndEncryptedMessage(byte[] iv, byte[] encryptedMessage) {
  �// Save the IV and the encrypted message somehow (e.g. in a database)
 }
}

9.5. References	 �OWASP. Secure cryptography in Java:
https://www.owasp.org/index.php/Using_the_Java_Cryptographic_Extensions [26]

	 Scrypt key derivation function:
	 https://www.tarsnap.com/scrypt.html [27]

	� Python. bcrypt cryptographic functions:
https://pypi.org/project/bcrypt/ [28]

CCN-CERT BP/28: Recommendations on Secure Development

9. Cryptography

53

10. Secure file
management

It is a process that involves the protection of data stored in files to en-
sure their integrity, confidentiality and availability, including measures
such as cryptography, authentication, authorisation, access control and
backup.

This process should be considered during the design phase of an ap-
plication and then implemented during its development. Most applica-
tions rely on internal files in order to function and, in addition, if the file
uploading by users are allowed, appropriate security controls must be
put in place.

10.1.Potential
risks
Without good file management, the following risks
could exist:

	 �Unauthorised access to files, which would result in the:
	 ◗	� �Disclosure of data.	
	 ◗	� �Loss of sensitive information.
	 ◗	� �Data manipulation.
	 ◗	� �Deletion of data.

	 �Loading of malicious files, which would result in the:
	 ◗	� �Remote file execution.
	 ◗	� �Denial of service attack.
	 ◗	� �Malware infection.

	 �Lack of backups:
	 ◗	� �Unavailability of service (DoS).
	 ◗	� �Loss of user data.
	 ◗	� �Loss of valuable data to the company.

CCN-CERT BP/28: Recommendations on Secure Development

54

10.2. Security recommendations

	 �Authenticate and authorise the user before uploading or down-
loading any files, especially if the data is sensitive.

	 �Do not use user-supplied input to name files or directories.

	 �Validate content types not only by extension, but also check
MIME types to verify files.

	 �Do not allow executable files to be uploaded to the application.

	 �Limit file sizes to the minimum that the server can handle with-
out causing availability problems and impacting application
functionality.

	 �Before processing the files to the server, an anti-virus scanner
checks the files for malware or viruses.

	 �Disable execution privileges on directories where users can up-
load files.

	 �Do not use absolute paths when providing a download link to
the user.

	 �Do not store files with their names sequentially.

	 �Do not use sensitive information for file naming.

	 �Ensure that the access control is set to read-only.

	 �Limit the number of files uploaded by the user.

	 �Store hashes of uploaded files to ensure their integrity.

CCN-CERT BP/28: Recommendations on Secure Development

10. Gestión segura de archivos

55

10.3. Example

The following example validates the
file size and checks that the mimetype
matches what is expected before pro-
cessing the file.

Another solution is to configure the
Apache server to limit this type of
request. This is optimal in terms of per-
formance and more secure because
the request stays on the web server and
does not even enter the application.

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;

public class FileManager {
 private static final long MAX_FILE_SIZE = 10485760; // 10MB
 �private static final List<String> ALLOWED_MIME_TYPES = List.of

 ("text/plain", "image/jpeg", "image/png");

 public static void processFile(String filePath) throws IOException {
  // Check that the file exists and is readable
  File file = new File(filePath);
  if (!file.exists() || !file.canRead()) {
   throw new IOException("File does not exist or cannot be read");
  }
  // Check file size
  long fileSize = file.length();
  if (fileSize > MAX_FILE_SIZE) {
   throw new IOException(("File is too large");
  }
  // Check the file's mimetype
  Path path = Paths.get(filePath);
  String mimeType = Files.probeContentType(path);
  if (!ALLOWED_MIME_TYPES.contains(mimeType)) {
   throw new IOException("File type is not allowed");
  }
       // Process the file
  // ...
 }
}

LimitRequestBody 10485760
SetEnvIf Request_URI "^.*$" ALLOWED_MIME_TYPE=1
SetEnvIf Request_URI "^.*\.(txt|jpe?g|png)$" ALLOWED_MIME_TYPE=1

10.4. References	� Apache Server. Configuration Directives:
https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestbody [29]

	� Java. Canonisation of Path:
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/io/File.
html#getCanonicalPath() [30]

	� PHP. Path canonicalisation:
https://www.php.net/manual/es/function.realpath.php [31]

	 �Python: Mapping files with their MimeTypes:
https://docs.python.org/3/library/mimetypes.html [32]

CCN-CERT BP/28: Recommendations on Secure Development

10. Gestión segura de archivos

56

11. Transaction
security

It is a set of measures designed to protect financial and payment trans-
actions from possible fraud or attacks. These measures include:

	 �User authentication: only authorised persons have access to fi-
nancial transactions and accounts. User authentication typically
includes strong passwords and, ideally, two-factor authentication.

	 �Cryptography: helps to protect confidential information during
transactions.

	 �Validation of transactions: to ensure that they are legitimate and
not part of a fraud or cyber-attack.

	 �Transaction monitoring: to help detect and prevent potential
fraud or attacks in real time.

	 �Back-up: A data recovery plan in case of an attack or accidental
loss of data ensures data availability.

Any interaction with a complex data structure consisting of several se-
quentially applied processes must be carried out at once and in a secure
manner.

They must meet the following properties:


Atomicity

Transactions must have a start point
and an end point, always and in any

case. They must be uniquely
identified. And all operations

performed by the transaction must
execute successfully or, in case of
error, rollback the operations to the

initial state.


Consistency

Transaction data must be validated
and consistent in terms of its

integrity and, in case of causing a
change of state, a valid and

expected state.


Isolation

Transaction operations can be
performed independently of the
operations of other transactions

without affecting each other's data
or their particular states.


Durability

Transactions have a maximum
lifetime, and once completed, their

information is persistent.

CCN-CERT BP/28: Recommendations on Secure Development

57

11.1. 
Potential risks
There are several potential risks associated with
transactions:

	 �Exploitation of the Payment Bypass vulnerability: due to an
inadequate configuration of the payment system. It allows an
attacker to manipulate the parameters exchanged between the
client and the server by processing the response before it is
sent to the payment gateway and bypassing the payment sys-
tem in general.

	 �Fraud: making use of false information or manipulating trans-
actions to obtain illicit benefits.

	 �Theft of confidential information: to be used to do commer-
cial damage or for future attacks

	 �Disruption of transaction processing: through DoS/DDoS at-
tacks.

	 �Loss of data: due to system failures, attacks or natural disas-
ters with serious consequences for transactions, which may
affect the confidentiality and integrity of information.

11.2. Security recommendations

	 To avoid Payment Bypass vulnerability:

	 ◗	��	� The authorisation and confirmation of a purchase must be
done on the server side.

	 ◗	��	� It is necessary to validate that the signatures used are cor-
rect during the communication process with the payment
gateway.

	 ◗	��	� Validate that the price is correctly set on the server side.

	 ◗	��	� Validate that payments are not reused.

	 ◗	��	� The payment server must always check at which stage of
the transaction you are in.

	 Include a relatively short authorisation expiry time for each
transaction.

CCN-CERT BP/28: Recommendations on Secure Development

11. Transaction security

58

	 Ensure traceability of transactions.

	 Encrypt communications with robust asymmetric algorithms.

	 Detailed recording of all transactions with anonymisation of
sensitive information.

11.3. Example

This example could serve as a guide to avoid the Payment ByPass vul-
nerability:

import java.math.BigDecimal;

public class PaymentProcessor {

 private static final BigDecimal MIN_PAYMENT_AMOUNT = new BigDecimal("0.01");

 public void processPayment(String tId, BigDecimal amount, String paymentMethod) {
  // Check if the transaction ID is valid
  if (tId == null || !isValidTransactionId(tId)) {
  throw new IllegalArgumentException(("Invalid transaction ID");
  }
  // Check if the amount and method of payment is valid
  if (amount == null || amount.compareTo(MIN_PAYMENT_AMOUNT) < 0) {
  throw new IllegalArgumentException("Invalid payment amount");
  }
  if (paymentMethod == null || !isValidPaymentMethod(paymentMethod)) {
   throw new IllegalArgumentException("Invalid payment method");
  }
  // Process payment
 }
 private boolean isValidTransactionId(String transactionId) {
  // Check if the transaction ID is in the list of allowed IDs
 }
 private boolean isValidPaymentMethod(String paymentMethod) {
  // Check if the payment method is in the list of allowed payment methods
 }
}

11.4. References	 �WordPress. Plugin to avoid the Payment ByPass vulnerability:
https://www.acunetix.com/vulnerabilities/web/wordpress-plugin-nab-transact-
security-bypass-2-1-0/

CCN-CERT BP/28: Recommendations on Secure Development

11. Transaction security

59

12. Communications
security

Security in application communications is essential to protect the con-
fidentiality, integrity and availability of information transmitted through
applications. This is especially important in the context of mobile appli-
cations, where information may be transmitted over insecure or public
networks.

12.1. Potential risks

An application without communication security measures
is exposed to several potential threats:

	 Theft of confidential information.

	 Service interruptiono.

	 Identity theft.

	 Modification or destruction of data.

	 Spread of malicious software.

CCN-CERT BP/28: Recommendations on Secure Development

Security in application
communications is
essential to protect the
confidentiality, integrity
and availability of
information transmitted
through applications

60

12.2. Security recommendations

	 Always encrypt communication channels by means of:

	 E	� TLS: is a cryptographic protocol that allows communica-
tion channels to be encrypted. This protocol applies priva-
cy, authentication and data integrity as properties of the
communication channel.

	 E	� WebSocket: is a technology that provides a bidirectional
(two-way, send and receive) and full-duplex (simultane-
ous) communication channel over the same TCP socket.

	 It uses strong cryptography: strong enough to make any at-
tempt at decryption futile.

	 Use security protocols: such as HTTPS or FTPS.

CCN-CERT BP/28: Recommendations on Secure Development

12. Communications security

61

13. Data protection

The components on which security is focused to protect data are the
following::

	 �Authentication: the user accessing the data is who he/she
claims to be and is given roles or access privileges

	 �Authorisation: access privileges or user roles allow only cer-
tain types of operations on only certain data.

	 �Confidentiality: data must be protected from unauthorised ob-
servation or disclosure in transit and when stored.

	 �Integrity: data must be protected in case it is maliciously cre-
ated, modified or deleted by unauthorised attackers.

	 �Availability: data must be available to authorised users when-
ever necessary (backup policies).

This standard assumes that data protection is implemented in a trust-
ed system that has been built with sufficient security safeguards.

CCN-CERT BP/28: Recommendations on Secure Development

62

13.1. Potential risks

Any security vulnerability that is exploited in an application's data could
lead to:

	 �Failure to comply with the regulations and legislation on the
processing of personal data may result in financial penalties or
interruption of the service.

	 �Compromise or loss of sensitive company information.

	 �Compromise or loss of sensitive third-party information which
could lead to litigation and financial loss.

	 �Loss of corporate image.

	 �Loss of certifications as a consequence of non-compliance
regarding data protection.

13.2. Security recommendations

	 Check that all sensitive or personal information to be handled
by the application is identified, and that there is an explicit pol-
icy specifying how access to it is to be controlled, processed
and, when stored, properly encrypted in accordance with the
correct data protection guidelines, in compliance with local
laws and regulations.

	 Ensure that all sensitive data is sent to the server in the HTTP
message body or headers, avoiding sending sensitive data via
URL parameters.

	 Check that the communication channels used for sending con-
fidential data are secure using strong encryption algorithms.

CCN-CERT BP/28: Recommendations on Secure Development

13. Data protection

63

	 Check that stored sensitive data is encrypted with strong en-
cryption algorithms.

	 Check that the application sets sufficient headers against
caching, so that any sensitive information is not stored in the
cache of modern browsers (e.g. visit over cache to check the
disk cache).

	 Ensure that sensitive information stored in memory is overwrit-
ten with zeros as soon as it is not needed, to mitigate memory
dump attacks.

	 Verify that a secure data deletion policy is in place when assets
have reached the end of their life cycle.

13.3. Example

An example configuration of the Apa
che Tomcat server to secure commu-
nications with TLS would be, in the
server.xml file:

An example of using SSL sockets in
Java:

<Connector
 protocol="org.apache.coyote.http11.Http11NioProtocol"
 port="8443" maxThreads="200"
 scheme="https" secure="true" SSLEnabled="true"
 keystoreFile="mykeystore" keystorePass="<password>"
 clientAuth="false" sslProtocol="TLS"/>

import javax.net.ssl.SSLSocket;
import javax.net.ssl.SSLSocketFactory;

// Create an SSL socket factory
SSLSocketFactory sslSocketFactory = (SSLSocketFactory) SSLSocketFactory.getDefault();

// Create an SSL socket and establish the connection
SSLSocket sslSocket = (SSLSocket) sslSocketFactory.createSocket("www.example.com", 443);

CCN-CERT BP/28: Recommendations on Secure Development

13. Data protection

64

An example of using HTTPS connec-
tions in Java:

An example of using secure connec-
tions with WebSockets in Javascript,
on the client side

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.URL;
import java.net.URLConnection;

// Create an HTTPS connection
URL url = new URL("https://www.example.com");
URLConnection connection = url.openConnection();

// Send a POST request to the HTTPS connection
connection.setDoOutput(true);
OutputStreamWriter out = new OutputStreamWriter(connection.getOutputStream());
out.write("param1=value1¶m2=value2");
out.close();

// Read HTTPS connection response
BufferedReader in = new BufferedReader(new InputStreamReader(connection.
getInputStream()));
String inputLine;
while ((inputLine = in.readLine()) != null) {
 System.out.println(inputLine);
}
in.close();

// Create an HTTPS connection with WebSockets
const socket = new WebSocket("wss://www.example.com/ws");

// Send a message over HTTPS connection
socket.send("Hello, world!");

// Receive messages from HTTPS connection
socket.onmessage = function(event) {
 console.log("Mensaje recibido:", event.data);
};

13.4. References	 �SSL/TLS algorithms:
https://docs.oracle.com/en/java/javase/15/docs/specs/security/standard-
names.html#sslcontext-algorithms [34]

	� Java. HttpClient with SSL:
https://www.baeldung.com/java-httpclient-ssl [35]

	� Python. SSL/TLS:
https://docs.python.org/3/library/ssl.html [36]

	� Python. WebSockets:
https://pypi.org/project/websockets/ [37]

CCN-CERT BP/28: Recommendations on Secure Development

13. Data protection

65

14. Python:
Complementary
indications

14.1. Architecture

14.1.1. Virtual Environment

It is advisable to use a virtual environment in any Python project,
which is equipped to separate application development in virtual en-
vironments.

A virtual environment isolates the Python interpreter, libraries and
scripts installed in it. This means that instead of using a global version
of Python and global Python dependencies for all the projects you want
to develop, you can have specific virtual environments for each project
and in each one you can have your own versions of Python, as well as
its dependencies.

Virtual environments facilitate the development, packaging and deliv-
ery of secure Python applications. Most IDEs have built-in functions for
switching between virtual environments.

A link to the Python library for creating venv virtual environments can
be found below
	 https://docs.python.org/3/library/venv.html [38]

CCN-CERT BP/28: Recommendations on Secure Development

66

14.1.2. Importing packages

When working with external or internal Python modules, always make
sure that you are importing in the correct way and using the correct paths.
There are two types of import paths in Python, absolute and relative.

Absolute import specifies the path of the resource to import using its
full path from the root folder of the project, while relative import speci-
fies the resource to import relative to the current location in the project
where the import statement is located.

There are two (2) types of relative imports:

	 �Implicit: Implicit imports do not specify the path of the re-
source relative to the current module. Implicit import has been
removed from Python 3, because if the specified module is in
the system path, it will be imported and that could be very dan-
gerous. It is possible that a malicious module with the same
name is in a popular open-source library and finds its way into
the system path. If the malicious module is found before the
real module, it will be imported and could be used to exploit
applications that have it in their dependency tree.

	 Therefore, either absolute import or explicit relative import
should be used, ensuring the import of the actual and the in-
tended module.

	 Explicit: Explicit imports specify the exact path of the module
to be imported in relation to the current module

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

67

14.2. Authentication

The Django framework, based on the Python language, has, in its default
configuration, an authentication system and supports an extension
and customisation of authentication. It provides both authentication
and authorisation together. It handles user accounts, groups, permis-
sions and user sessions based on cookies. This system consists of:

	 “Users” objects: are the core of the authentication system. They
typically represent the people who interact with the application
and are used to allow things like restricting access, registering
user profiles, associating content with creators, etc. There is
only one kind of user in Django's authentication framework, i.e.
"superusers" or "staff" admin users are just user’s objects with
special attributes set.

	 Permissions and Authorisation: Django comes with a built-in
permissions system. It provides a way to assign permissions
to specific users and user groups.

	 Authentication on web requests: Django uses sessions and
middleware to hook the authentication system into request
objects. These provide a request.user attribute on each re-
quest that represents the current user. If the current user is not
logged in, this attribute will be an instance of AnonymousUser,
otherwise it will be an instance of User.

	 User management in the admin panel: when both django.con-
trib.admin and django.contrib.auth are installed, the admin
panel provides a mode.

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

The Django framework,
based on the Python
language, has, in its
default configuration,
an authentication
system and supports
an extension and
customisation of
authentication

68

14.3. Session management

It is recommended use the default implementations of CSRF protec-
tions that exist in the vast majority of frameworks, such as the Django
framework, which has CSRF middleware enabled by default, as well as
the template tag and the Flask framework.

Python example with Django framework.

	 settings.py file: leave the default middleware CSRF enabled in
the settings file.

	 File template_example_csrf.html: add the csrf_token tag in-
side the <form> element with POST method for an internal URL:

	 Views.py file: RequestContext must be used in the rendering
of the response for the {% csrf %} tag to work correctly. Note
that if you use the render() function, generic views apps con-
trib, this is already covered as they all make use of Request-
Context:.

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

69

14.4. Validation of input
parameters

14.4.1. Parameterised database queries

The use of parameterised queries is recommended for any application
access to the database.

Example of safe Python code with safe query parameter passing. The
following code fragment defines the is_admin function that receives a
string as input parameter and returns a boolean. If the user does not
exist it returns False and if the user exists, it returns the value of the
admin column which can be True if it is an administrator or False if it is
not an administrator.

By parameterising the query and validating whether the query result is
None, a SQL Injection vulnerability attack is prevented:

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

70

14.4.2. Protection of Forms

It is recommended to protect forms where there are parameters
whose value can be modified by users. This is achieved with the fol-
lowing measures:

	 �Properly encoding data output: this mainly consists of apply-
ing HTML encoding to any output that reproduces data entered
by the user at the input, so that it cannot be interpreted as code
by the browser:

	 ◗	� �Indicate the type of the response content in its Content-type
header (see IANA media-types for supported types: applica-
tion/json, text/html...), so that the client side knows how to
interpret it.1 [39] for supported types: application/json, text/
html…), so that the client side knows how to interpret it.

	 ◗	� �Include X-Content-Type-Options=nosniff header to avoid MIME-
sniffing by some browsers, and therefore rendering content
differently than declared in the Content-type.

	 �Filter potentially dangerous meta-characters: in vulnerable in-
put. For example, the characters "<" ">" ";" "/" "/" "and all non-print-
able characters should be properly filtered out from the input in
the application.

	 �Apply form data filtering policies.

 	 �Example of secure Python code making use of the functions html.
escape (converts the &, < and > characters of the string received

as input parameter into HTML-safe sequences) and html.unescape

(converts the) from the html library:

1	 Media Types https://www.iana.org/assignments/media-types/media-types.xhtml

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

71

	 �Session cookies marked with the HttpOnly flag to prevent ses-
sion theft in case of exploiting an XSS vulnerability.

	 �Implement all recommendations on the server side.

	 �Validation of Inputs. It is recommended to always use a whitelist
or blacklist approach, with the whitelist being the most recom-
mended approach where anything that does not fit the specifi-
cations is rejected.

 	 �These checks must be done on both the client-side and serv-
er-side, at a minimum on the server-side to ensure that the busi-
ness logic treats the data securely (CWE-602)2 [40].

 	 �On the other hand, it is also necessary in any typed language to
transform the data types into the expected type, for example, if
a String is received and an Int is expected, to perform a casting
or transformation.

 	� Example of secure Python whitelisted
code:

 	� Example of safe Python code regular
expression checking:

2	 CWE-602 https://cwe.mitre.org/data/definitions/602.html

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

Example of Python
safe code type check-
ing and casting.

72

	 �Avoid misuse of user input. The use
of user input for system calls or to
provide file parts should be avoided.
Here is a Python example of how you
can restrict access to files within a
specific directory:

	 ��Prevent XEE. Always disable the res-
olution of external DTDs, so that only
statically defined local DTDs are used.
It is also recommended to always val-
idate the structure of the XML docu-
ment provided by the user, using the
server's statically defined format defi-
nition DTD file as a basis.

 	 �Example of a secure Python XML parser library: defusedxml3
[41] is a pure Python package with modified subclasses of all
stdlib XML parsers that prevent any potentially malicious oper-
ation. The use of this package is recommended for any server
code that parses untrusted XML data. The package also in-
cludes example attacks and extended documentation on more
XML vulnerabilities, such as XPath injection..

 	 �The defusedxml library prevents XEE attacks because it does
not allow the use of XML with <!ENTITY> declarations inside
the DTD and throws the EntitiesForbidden exception when an
entity is declared. On the other hand, it does not allow any re-
mote or local resource access in external entities or DTD and
raises the External ReferenceForbidden exception when a DTD
or entity references an external resource.

 	� Python example with the defusedxml
library:

	 �Standardisation. Use Python's native functions for the stand-
ardisation of the charset of all the information processed by
the system.

 	 Example: codecs library4 [42]:

3	 XML parser https://pypi.org/project/defusedxml/
4	 Standardisation Codecs https://docs.python.org/3/library/codecs.html

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

73

	 �Data sanitisation. Some of the most common special character
set languages and recommended packages for sanitisation are:

	 ◗	� �HTML/URL: html-sanitizer5 [43]

	 ◗	� �XML: EscapingXML6 [44]

	 ◗	� �JSON: JsonSchema7 [45] implementation of the JSON
Schema specification for Python.

 	 �Most frameworks come with sanitization functions: Flask8 [46]
and Django9 [47]

	 �String formatting. Python has one of the most powerful and
flexible methods for formatting strings and if not used properly,
it could end up opening up a security vulnerability in the code.
Python3 introduced f-strings10 [48] and str.format()11 [49] as a
flexible way of formatting strings and it is really very interesting.

 	 �However, this opens a loophole for data exploitation when it
comes to user input. If the application built in Python allows
users to control the format string, they can be misused to leak
sensitive data. For example:

 	 �With this, sensitive global data of a CONFIG dictionary can be
accessed via the argument.

 	 �However, Python has a built-in string
module that can be used to fix and pre-
vent this. Using the Template class of
the string module:

 5	 HTML Sanitisation https://pypi.org/project/html-sanitizer/
 6	 XML Sanitisation https://wiki.python.org/moin/EscapingXml
 7	 JSON Schema Sanitisation https://python-jsonschema.readthedocs.io/en/latest/
 8	 Flask Sanitisation https://flask.palletsprojects.com/en/2.0.x/api/#flask.escape
 9	 Django Sanitisation https://docs.djangoproject.com/en/4.0/_modules/django/utils/html/
10	 Formatting Chains I https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals
11	 Chain Formatting II https://docs.python.org/3/library/stdtypes.html#str.format

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

74

15. Checklist
security controls

architecture id security control description

ARQ-01 Identify components Components that have not been
correctly identified are potential security
risks

ARQ-02 Bastioning components Ensure that the configurations are
as secure as possible: there are not
debugging options enabled, nor default
users and passwords, etc.

Ensure that only those communication
ports that are strictly necessary are open.

Status of the latest system update.

Identification of all system components:
Libraries, Modules, Frameworks,
Services, etc.
For each system component,
perform the same baseline review of
configurations and update status.

ARQ-03 Analysing risks Obtain a report of the components in
which there are vulnerabilities detected
for which there is currently no security
patch and analyse their level of risk
within the application.

ARQ-04 Monitoring updates Keep a close watch on vulnerable
components so that they are updated as
soon as possible.

ARQ-05 Alternative mitigations Conduct a study of how the security
problems created by these risk
vulnerabilities could be avoided or
mitigated by alternative security
systems.

CCN-CERT BP/28: Recommendations on Secure Development

75

authentication id security control description

AUT-01 Hash for passwords Ensure that passwords are not stored
in a readable format, so that if the
system or resource containing the
passwords is compromised, the
malicious user is still unable to use
them.

AUT-02 Disconnect button Each page of the application has a
logout link, that the session expires
when the user logs out, and that the
session expires when a reasonable
amount of time of non-activity has
passed.

AUT-03 Do not expose credentials Never expose credentials in the URL.

AUT-04 Use POST When using forms, use POST methods
for sending information between the
client and the server.

[ARCHITECTURE] ARQ-06 Logical perimeter security By installing firewalls, IDS or similar
devices, or by segmenting the network.

ARQ-07 Securing sensitive data Ensure that data are protected by
authorisation mechanisms between
environments through physical or logical
segregation, and by backups to ensure
their availability.

ARQ-08 Programming language security Use the most recent version of the
programming language.

Use a Virtual Environment as a project
workspace if applicable according to the
programming language.

Correct import of packages according
to programming language, thoroughly
checking the security of the packages
to be installed.

ARQ-09 Disable debugging options Especially in Production to avoid
information leakage in the detailed error
messages.

ARQ-10 Development environment Use tools in the IDE that perform basic
semantic and security analysis.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

76

[AUTHENTICATION] AUT-05 Use multi-factor authentication Use multi-factor authentication to
implement multiple layers of security for
sensitive applications.

Use two-factor authentication to
the user for critical functions in
the application, such as changing
passwords or accessing particularly
sensitive resources.

AUT-06 Blocking of accounts Implement account locking after 3 failed
login attempts and a way to contact the
administrator to unlock the account.

AUT-07 Use of CAPTCHA Implement CAPTCHA to mitigate brute
force attacks on applications exposed
on the internet.

AUT-08 Prevent user enumerations Providing generic error messages in
case of authentication failure, such as
"The user and/or password provided are
not correct".

For providing different response times
in case of non-existent user or incorrect
password.

In password recovery procedures that
require entering the username.

AUT-09 Disable "autocomplete". Disable the "auto-complete" attribute of
the password field in the application, as
it is enabled by default.

AUT-10 Password complexity requirements It must have a minimum of eight
characters and a sensible maximum.
It must contain at least three of the
following characters: one upper case
letter, one lower case letter, one number,
one special character.

AUT-11 Do not store Cookie Not to persistently store the
authentication cookie on the customer's
computer, and not to use it for other
purposes such as personalisation.

AUT-12 Register access Record all accesses in a specific security
log stating the outcome of the access
attempt (whether it was successful or
unsuccessful, cancelled or blocked).

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

77

autorización id security control description

ATZ-01 Minimal privilege Ensure the implementation of the
principle of least privilege: Users have
restricted access only to the functions
and data they really need to perform
their work normally.

ATZ-02 Roles and privileges Assign permissions and privileges
to application roles, never directly to
users. Users must have roles and their
privileges are taken from these roles.

ATZ-03 Protection by authorisation Check that access to confidential data
is protected, so that only authorised
objects or data accessible to each user
can be reached.

ATZ-04 Directory browsing disabled Verify that directory browsing is disabled,
unless it is deliberately enabled.

ATZ-05 Access control on the server Ensure that access control rules are
applied on the server side.

ATZ-06 Safe Handling of User Information Verify that all user attributes, data and
policy information used by access
controls cannot be manipulated by end-
users unless specifically authorised.

ATZ-07 Safe handling of resources Verify that there is a centralised
mechanism (including libraries that
call external authorisation services) to
protect access to each type of protected
resource.

ATZ-08 Anti-CSRF tokens The application uses strong anti-CSRF
random tokens or implements another
transaction protection mechanism.

ATZ-09 Register access control Record all operations on sensitive data
in a specific security log even if they
have been denied.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

78

session management id security control description

SES-01 Secure headers Implementing secure headers with
directives such as cache-control or
strict-transport security

SES-02 Session invalidation Check that sessions are invalidated
when the user logs out.

SES-03 Session expiry Sessions must expire after a specified
time of inactivity.

SES-04 Logging out Ensure that all pages requiring
authentication have easy and
user-friendly access to the logout
functionality.

SES-05 Do not expose session ID Verify that the session ID never appears
in URLs, error messages or logs.

SES-06 New session IDs Ensure that every successful
authentication and re-authentication
generates a new session and a new
session ID, destroying the old one.

SES-07 Session Cookie Check that the session ID stored in the
cookies is defined using the HttpOnly
and Secure attributes.

Properly configure the Path attribute of
session cookies to prevent access to
other domains.

SES-08 Follow-up sessions Verify that the application keeps track
of all active sessions and allows the
user to terminate sessions selectively
or globally from their account.

In the case of high-value applications,
ensure that the user is required to close
all active sessions if the password has
just been successfully changed.

SES-09 Record session activity Record in a security log all sessions that
are created, manually closed or expired
from the client or from the server.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

79

validation of input
and output data id security control description

VAL-01 Validate on the server side Validations must always be performed
on the server side.

VAL-02 Validation schemes Use data validation schemes as the best
solution to validate data entry.

Failing this, use standard input
validation mechanisms provided by
technology-specific libraries.

VAL-03 Data typification Check that structured data is strongly
typed and validated according to a
defined schema, including allowed
characters, length and pattern.

VAL-04 Data sanitisation Verify that unstructured data is sanitised
to impose generic security measures,
such as allowed characters and length,
and avoid potentially harmful characters.

Ensure that all unreliable input is properly
sanitised using a sanitisation library.

VAL-05 Accept only expected data Accept only the expected data at each
entry point of the application. Any
unexpected data must be rejected.

VAL-06 SQL injection protection Ensure that all database queries are
protected using parameterised queries
to prevent SQL injection.

VAL-07 Correct encoding of HTML variables To ensure that the application is not
susceptible to Cross-Site Scripting (XSS)
reflected, stored or DOM

VAL-08 XML parser constraints Verify that the application restricts XML
parsers to use only the most restrictive
settings possible and ensure that
dangerous functions, such as external
entity resolution, are disabled.

VAL-09 Deserialisation of data Verify that deserialisation of unreliable
data is prevented or largely protected
when deserialisation cannot be avoided.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

80

error management id security control description

ERR-01 Exposure of information in errors Use generic error messages that do
not give clues to end-users about any
sensitive aspects of the application.

ERR-02 Centralisation of errors Use centralised exception handling.

The application must handle errors
without relying on server error messages
displayed to users.

ERR-03 Default refusal in case of error Any access control logic that leads to an
error must deny access by default.

ERR-04 Controlled errors Analyse in detail all exceptions that may
occur due to the use of system libraries
or third-party libraries in the application,
handle them appropriately and provide a
safe exit to the application.

Use try/catch/finally to ensure shutdown
of all resources in case of error.

ERR-05 Recording errors Log all unexpected exceptions in a
specific security log.

secure registration id security control description

LOG-01 Do not record sensitive information Such as passwords, financial information,
credit cards, personal data, etc. In these
cases, use tokens, anonymisation of
information or encryption.

LOG-02 Validate record variables Validate the parameters of the variable
components that will make up the log
entry to avoid injections and unexpected
behaviour.

LOG-03 Precise notes Make sufficiently precise notes that
allow the user's operations and activities
to be known for safety.

LOG-04 Integrity of the register Use hash functions to ensure data
integrity of records.

LOG-05 Isolation of the security log The security register must be
independent of other registers and
have its own security protections in the
system.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

81

cryptography id security control description

CRT-01 Encryption of sensitive information All sensitive information of an
organisation must be stored in an
unreadable (encrypted) form to ensure
its confidentiality.

CRT-02 Secure random generator Check that all random numbers, random
file names, random GUIDs and random
strings are generated by a random
number generator approved by the
cryptographic module.

Check that random numbers are
created with an appropriate level of
entropy, even when the application is
under high load.

CRT-03 Key management policy Check that there is an explicit policy on
the handling of cryptographic keys (such
as generation, distribution, revocation
and deprecation).

Check that the lifecycle of cryptographic
keys is correctly implemented.

CRT-04 Release of sensitive information Ensure that confidential passwords or
critical information residing in memory
are overwritten with zeros as soon as
they are no longer used to mitigate
memory dump attacks.

CRT-05 Use of robust algorithms Check that obsolete or weak
cryptographic algorithms such as the
symmetric key DES algorithm or hash
functions such as MD5 or SHA-1 are
not used due to the impossibility to
guarantee confidentiality.

Use existing cryptographic libraries
and in any case use custom or user-
created cryptographic algorithms or
implementations.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

82

secure files id security control description

FIL-01 Download authorisation Authenticate and authorise the user
before uploading or downloading any
files, especially if the data is sensitive.

FIL-02 Do not allow renaming Do not use user-supplied input to name
files or directories.

FIL-03 Validate MIME types Validate content types not only by
extension, but also check MIME types to
verify files.

Do not allow executable files to be
uploaded to the application.

FIL-04 Limit file size Limit file sizes to the minimum that
the server can handle without causing
availability problems and impacting
application functionality.

FIL-05 Scanning files Before processing the files to the server,
an anti-virus scanner checks the files for
malware or viruses.

FIL-06 Directory privileges Disable execution privileges on
directories where users can upload files.

Do not use absolute paths when
providing a download link to the user.

FIL-07 Secure file names Do not store files with their names
sequentially.

Do not use sensitive information for file
naming.

FIL-08 Read only Ensure that the access control is set to
read-only.

FIL-09 File limit Limit the number of files uploaded by
the user.

FIL-10 File integrity Store hashes of uploaded files to ensure
their integrity.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

83

transaction
security id security control description

TRN-01 Payment Bypass Protection The authorisation and confirmation of
a purchase must be done on the server
side.

It is necessary to validate that the
signatures used are correct during
the communication process with the
payment gateway.

Validate that the price is correctly set on
the server side.

Validate that payments are not reused.

The payment server must always check
at which stage of the transaction you
are in.

TRN-02 Transaction expiry time Include a relatively short authorisation
expiry time for each transaction.

TRN-03 Transaction traceability Ensure traceability of transactions.

TRN-04 Encrypt communication between
transactions

Encrypt communications with robust
asymmetric algorithms.

TRN-05 Record transaction activity Detailed recording of all transactions
with anonymisation of sensitive
information.

communications
security id security control description

COM-01 Always encrypt communication channels TLS, a cryptographic protocol for
encrypting communication channels.

WebSocket, a technology that provides
a bi-directional communication channel
over the same TCP socket.

COM-02 Use strong cryptography Strong enough to make any attempt at
deciphering futile.

COM-03 Use secure protocols Uses security protocols: such as HTTPS,
or FTPS

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

84

data protection id security control description

DAT-01 Data protection policy Check that an explicit data protection
policy is in place.

DAT-02 Sending sensitive data Ensure that all sensitive data is sent to
the server in the HTTP message body
or headers.

Check that the communication channels
used for sending confidential data are
secure.

Check that the application sets sufficient
headers against caching.

DAT-03 Securely stored data Check that stored sensitive data is
encrypted with strong encryption
algorithms.

Check that backup policies are in place
for data availability.

DAT-04 Release of sensitive data Ensure that sensitive information stored
in memory is overwritten with zeros as
soon as it is not needed, to mitigate
memory dump attacks.

DAT-05 Deletion of data There is a policy of secure deletion of
data when assets have reached the end
of their life cycle.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

85

16. Security vulnera-
bilities and controls

vulnerability security control

Insecure Communication

Enumeration of Usernames Authentication

Weak Password

Cross-Site Request Forgery - Cross-Site
Request Forgery (CSRF)

AuthorisationIdentification and Authentication Failures

Direct Access to Objects

Access Control

Cross-Site Scripting - Cross-Site Scripting
(XSS)

Data Validation

SQL Injection

Buffer overflow

Falsification of Records

Dynamic SQL

Open Redirect Vulnerability

Output Coding

Disclosure of Information

Weak Session Management
Session Management

Forms Cache

Information Disclosure Error Handling

Information Disclosure
RegisterRegistration does not exist for Critical

Functions

Storage of Sensitive Information in
Unencrypted Text Cryptography
Weak Cryptography

Insecure File Upload
Secure File Management

Information Disclosure

It is important to be aware of the most
common vulnerabilities located in the
code in order to know how they should
be addressed. These vulnerabilities have
been cross-referenced with the security
controls in the previous chapters

CCN-CERT BP/28: Recommendations on Secure Development

86

17. Security
measures and security
controls

security measures safe development guide

op.exp Exploitation Architecture

op.exp.4.1, op.exp.4.2, op.exp.7.r4.1 security recommendations

mp.com Protection of communications

mp.com.1.1, mp.com.4

op.acc Access control Authentication

op.acc.5.r3.2, op.acc.5.8, op.acc.5.r1.2, op.acc.5.r6.1 security recommendations

mp.sw Protection of applications Authorisation

mp.sw.1.r1.1 security recommendations

mp.s Protection of services

mp.s.2.1

op.pl Planning

op.pl.2.4

op.mon System monitoring

op.mon.1.r2.1

op.acc Access control

op.acc.4.1, op.acc.6.r5.1

CCN-CERT BP/28: Recommendations on Secure Development

87

mp.eq Protection of equipment Session Management

mp.eq.2.r1.1 recomendaciones de seguridad

op.pl Data validation Validación de Parámetro

op.pl.2.r3.1 recomendaciones de seguridad

mp.s Protection of services

mp.s.2.3

op.exp Exploitation Registro

op.exp.5.1, op.exp.7.r2.1, op.exp.8.2 recomendaciones de seguridad

mp.s Protection of services

mp.s.3.r1.1

op.acc Access control

op.acc.6.r9.2

mp.si Protection of information media Criptografía

mp.si.2.1 recomendaciones de seguridad

op.exp Exploitation

op.exp.10

op.exp Exploitation Secure File Management

op.exp.6.3 recomendaciones de seguridad

mp.com Protection of communications Communications Security

mp.com.2.r5.1 recomendaciones de seguridad

mp.info Protection of information Data Protection

mp.info.1.1, mp.info.2 recomendaciones de seguridad

CCN-CERT BP/28: Recommendations on Secure Development

17. Security measures and security controls

88

18. Glossary

OWASP (Open Web Application Security Project): is an open source
project dedicated to identifying and combating the causes that make
software insecure. The OWASP Foundation is a non-profit organisation
that supports and manages the OWASP projects and infrastructure.

The OWASP community is made up of companies, educational organ-
isations and individuals from around the world. Together they form a
computer security community that works to create articles, methodol-
ogies, documentation, tools and technologies that are released and can
be used free of charge by anyone.

Cookie: a small file sent by a website and stored in the user's browser,
so that the website can consult the browser's previous activity. In this
way, it is possible to identify the user visiting a website and to keep a
record of their activity on the website.

CSRF (Cross Site Request Forgery): is a cross-site request forgery vul-
nerability. It involves tricking a legitimate user into executing requests
or actions without their consent, without knowing what they are doing.

MFA (Multi-Factor Authentication): is a method of access control in
which a user is granted access to the system only after he/she provides
two or more different proofs that he/she is who he/she claims to be.

XEE/JEE (Xml/Json External Entity): is a code injection vulnerability in
an application that parses XML/Json data.

DTD (Document Type Definition): is a definition in an SGML or XML doc-
ument, which specifies restrictions on the structure and syntax of the
document.

CWE: is a community-developed list of types of software and hardware
weaknesses. It serves as a common language, a yardstick for securi-
ty tools, and as a baseline for weakness identification, mitigation and
prevention efforts.

CCN-CERT BP/28: Recommendations on Secure Development

89

19. References

[1] 	 "Design Patterns," [Online]. Available:
https://refactoring.guru/es/design-patterns

[2] 	 "OWASP: Design Secure Web Applications," [Online].

Available: https://owasp.org/www-pdf-archive/APAC13_

Ashish_Rao.pdf

[3] 	 Ámbitos de la Seguridad Nacional: Protección de

Infraestructuras Críticas," [Online]. Available: file:///Users/

lagor/Downloads/BOE-400_Ambitos_de_la_Seguridad_

Nacional_Proteccion_de_Infraestructuras_Criticas.pdf

[4] 	 "Java Secure Authentication," [Online]. Available:
https://docs.oracle.com/javaee/5/tutorial/doc/bncbe.

html#bncbn

[5] 	 "Python: Library for implementing OTP," [Online]. Available:

https://pypi.org/project/pyotp/

[6] 	 "Java: Secure Authorization," [Online]. Available:
https://docs.oracle.com/en/java/javase/19/security/

java-authentication-and-authorization-service-jaas1.html

[7] 	 "Python: Simple authorization secure library," [Online].

Available: https://pypi.org/project/python-authorization/

[8] 	 "OWASP: Secure Session Management," [Online]. Available:

https://cheatsheetseries.owasp.org/cheatsheets/Session_

Management_Cheat_Sheet.html

[9] 	 "Java: SpringSession Framework," [Online]. Available:

https://www.baeldung.com/spring-session

[10] 	 "OWASP: Parameter Validation," [Online]. Available:

 https://cheatsheetseries.owasp.org/cheatsheets/Input_

Validation_Cheat_Sheet.html

[11] 	 "OWASP: Data Validation - ESAPI Library," [Online].

Available: https://owasp.org/www-project-enterprise-

security-api/

[12] 	 "Validating Forms in Javascript," [Online]. Available:

https://www.tutorialspoint.com/javascript_form_validation_

web_application/index.asp

[13] 	 "Java: Spring Boot Validation," [Online]. Available:
https://www.baeldung.com/spring-boot-bean-validation

[14] 	 "XSS Prevention," [Online]. Available:
https://cheatsheetseries.owasp.org/cheatsheets/Cross_
Site_Scripting_Prevention_Cheat_Sheet.html

[15] "Colander Validation," [Online]. Available:
https://pypi.org/project/colander/

[16] 	 "Cerberus Validation," [Online]. Available:
https://docs.python-cerberus.org/en/stable/

[17] 	 "Validation Schematics," [Online]. Available:
https://schematics.readthedocs.io/en/latest/

[18] 	 "Schema Validation," [Online]. Available:
https://pypi.org/project/schema/

[19] 	 "JSON Schema Validation," [Online]. Available:
https://pypi.org/project/jsonschema/

[20] 	 "Java: Try - Catch - Finally," [Online]. Available:
https://www.w3schools.com/java/java_try_catch.asp

[21] 	 "Java: Exception Handling," [Online]. Available:
https://www.baeldung.com/java-exceptions

[22] "Error Handling Strategies," [Online]. Available:
https://dzone.com/articles/error-handling-strategies

[23] 	 "Python: Errors and Exceptions," [Online]. Available:
https://docs.python.org/es/3/tutorial/errors.html#errors-
and-exceptions

[24] 	 "Security Log: Best Practices for Logging and
Management," [Online]. Available:
https://www.dnsstuff.com/security-log-best-practices

[25] 	 "java: Logging," [Online]. Available:
https://docs.oracle.com/javase/7/docs/technotes/guides/
logging/index.html

[26] 	 "OWASP: Secure Cryptography in Java," [Online].
Available: https://www.owasp.org/index.php/Using_the_
Java_Cryptographic_Extensions

CCN-CERT BP/28: Recommendations on Secure Development

90

[27] 	 "Scrypt key derivation function," [Online]. Available:
https://www.tarsnap.com/scrypt.html

[28] 	 "Python: Cryptographic functions bcrypt," [Online].
Available: https://pypi.org/project/bcrypt/

[29] 	 "Apache Server: Configuration Directives," [Online].
Available: https://httpd.apache.org/docs/2.4/mod/core.
html#limitrequestbody

[30] 	 "Java: Canonisation of Path," [Online]. Available:
https://docs.oracle.com/en/java/javase/14/docs/api/java.
base/java/io/File.html#getCanonicalPath()

[31] 	 "PHP: Canonisation of Path," [Online]. Available:
https://www.php.net/manual/es/function.realpath.php

[32] 	 "Python: Mapping files to their MimeTypes," [Online].
Available: https://docs.python.org/3/library/mimetypes.html

[33] 	 "WordPress: Plugin to avoid Payment ByPass
vulnerability," [Online]. Available:
https://www.acunetix.com/vulnerabilities/web/wordpress-
plugin-nab-transact-security-bypass-2-1-0/

[34] 	 "SSL/TLS Algorithms," [Online]. Available:
https://docs.oracle.com/en/java/javase/15/docs/specs/
security/standard-names.html#sslcontext-algorithms

[35] 	 "Java: HttpClient with SSL," [Online]. Available:
https://www.baeldung.com/java-httpclient-ssl

[36] 	 "Python: SSL/TLS," [Online]. Available:
https://docs.python.org/3/library/ssl.html

[37] 	 "Python: WebSockets," [Online]. Available:
https://pypi.org/project/websockets/

[38] 	 "Virtual Environment," [Online]. Available:
https://docs.python.org/3/library/venv.html

[39] 	 "Media Types," [Online]. Available:
https://www.iana.org/assignments/media-types/media-
types.xhtml

[40] 	 "CWE-602," [Online]. Available:
https://cwe.mitre.org/data/definitions/602.html

[41] 	 "XML parser," [Online]. Available:
https://pypi.org/project/defusedxml/

[42] 	 "Codecs Standardisation," [Online]. Available:
https://docs.python.org/3/library/codecs.html

[43] 	 "HTML Sanitization," [Online]. Available:
https://pypi.org/project/html-sanitizer/

[44] 	 "XML Sanitisation," [Online]. Available:
https://wiki.python.org/moin/EscapingXml

[45] 	 "Sanitisation JSON Schema," [Online]. Available:
https://python-jsonschema.readthedocs.io/en/latest/

[46] "Flask Sanitization," [Online]. Available:
https://flask.palletsprojects.com/en/2.0.x/api/#flask.escape

[47] 	 "Django Sanitisation," [Online]. Available:
https://docs.djangoproject.com/en/4.0/_modules/django/
utils/html/

[48] 	 "String Formatting I," [Online]. Available:
https://docs.python.org/3/tutorial/inputoutput.
html#formatted-string-literals

[49] 	 "String Formatting II," [Online]. Available:
https://docs.python.org/3/library/stdtypes.html#str.format

CCN-CERT BP/28: Recommendations on Secure Development

19. References

91

principios de desarrollo seguro checklist controles de seguridad

Minimum Privilege An actor must have the minimum level of
permissions on system resources for the minimum
possible time. Access to resources should be
denied by default.

Authorisation System To split an application into an authorisation system
from the outset, preventing any unauthorised agent
from accessing the entire application. E.g., RBAC
system.

Separation of
Responsibilities

Any complex or sensitive task should require the
involvement of more than one actor with different
role levels. This prevents a single actor from
compromising the whole system.

Parameterised Use of parameterised queries for any application
access to the database.

Defence in Depth Establish multiple layered security mechanisms,
with different levels of complexity and control
factors. The aim is to avoid the "Single Point of
Failure".

Protection of Forms Protection of forms where there are parameters
whose value can be modified by users. This
protection consists of properly encrypting the
data output, filtering potentially dangerous meta-
characters in vulnerable entries and enforcing form
data filtering policies.

Failure Sure In the event of a failure, the system must be
returned to a secure state, minimising compromise
to the confidentiality, integrity or availability of the
system.

Validation of Inputs Validation of any input area and in an efficient
way including data from the internet, customers,
suppliers and regulators.

Economics of
Mechanisms

The implementation of a system's functionalities
and security controls should be as simple as
possible. Simpler means that fewer things can
go wrong.

Secure Transaction
Method

•	� The authorisation and confirmation of a
purchase must be done on the server side.

•	� Validate that the signatures used are correct
during the communication process with the
payment gateway.

•	� Validate that the price is correctly set on the
server side.

•	 Validate that payments are not reused.
•	� The payment server must always check at

which stage of the transaction you are in.
•	� The authorisation of each transaction should

have a relatively short expiry period.

Full Mediation Any request for access to system resources
must be validated so that authentication and
authorisation controls cannot be bypassed.

Use of MFA Implementation of a Multiple Factor Authentication
for sensitive data handling applications exposed to
the internet and privileged user access.

annex a. Basic cheatsheet

CCN-CERT BP/28: Recommendations on Secure Development

92

Open Design Shared resources between different users of the
system should be restricted to a minimum, for
confidentiality and concurrency reasons.

Protection of Sensitive
Data

Perform a series of actions from the beginning of
the development phase of an application, such as
the following:
•	� Identify the data to be processed that are

sensitive with respect to regulatory privacy
requirements.

•	� Apply controls such as encryption in transit or
at rest.

•	 Do not store sensitive data unnecessarily.
•	 Disable caching of sensitive data.
•	 Have encrypted data at rest.
•	� All data traffic must be encrypted with methods

such as TLS.
•	� Store passwords using strong hashing

algorithms with a duty factor that slows down
possible password cracking.

Least Common
Mechanism

The impact of security controls on the usability of
the system should be considered. Ideally, security
controls should be transparent to the user.

CSRF protections Include default implementation of CSRF
protections in the framework in use.

Psychological
Acceptability

The main point of compromise of a system must
be identified and the necessary security controls
implemented to protect it. A system is only as
secure as its weakest link.

Prevent XEE/JEE Disable resolution of external DTDs and validate
XML document structure.

Weakest Link It is advisable to encourage the reuse of well-
proven components and established solutions in
the system architecture.

Avoid use of certain
inputs

Avoid using user input for system calls or to
provide file parts.

Leveraging Existing
Components

Es recomendable fomentar la reutilización
de componentes bien probados y soluciones
consolidadas en la arquitectura del sistema.

Use updated version of
the language

Use the most recent version of the

For more information on the Secure Development Principles see CCN-CERT -
Workshop - Practical Approach to Secure Application Development v 1.0.

Use Virtual
Environment

Use of a Virtual Environment as a project
workspace if applicable according to the
programming language.

Correct import of
packages

Perform import path according to programming
language.

Use Formatting Secure
Chains

Formatting user input strings in a way that does
not allow control of the format string and prevents
filtering of sensitive data.

Secure Use of HTTP
Requests

Handling HTTP requests securely by avoiding
requests to exploited sources that may return
exploited code in the headers or in the body of the
response.

Installed and imported
packages Secure

Thorough security check of the packages to be
installed.

Secure Data
Deserialisation

Make use of deserialisation library functions that
prevent attack vectors.

Keeping Vulnerabilities
Up to Date

Maintain up-to-date Open-Source Vulnerabilities in
installed and imported Packages.

Disable Debugging in
Production

Set Production Debugging to False to avoid
information leakage in the detailed error
messages.

Code scanning Use tools in the IDE that perform semantic
analysis.

CCN-CERT BP/28: Recommendations on Secure Development

annex a. Basic cheatsheet

93

principles
of secure
development

checklist security
controls reference entities security controls mapping

Minimum Privilege Authorisation System ISO Promotes safety, clarity and
reliability of products and for
various industries by publishing
globally applicable standards.

Insecure
Communication

Authentication

Separation of
Responsibilities

Parameterised NIST Physical Sciences Laboratory
and a non-regulatory agency
of the US Department of
Commerce.

Enumeration of
Usernames

Defence in Depth Protection of Forms OWASP Online community that provides
free articles, methodologies,
documentation, tools and
technologies in the field of web
application security.

Weak Password

Failure Sure Validation of Inputs MITRE Organisation that provides
systems engineering, research,
development and IT support to
the US government.

Cross-Site Request
Forgery Cross-Site
Request Forgery
(CSRF)

Authorisation

Economics of
Mechanisms

Secure Transaction Method proactive
controls

For more information on the
Secure Development Principles
see CCN-CERT - Workshop -
Practical Approach to Secure
Application Development v 1.0

Identification and
Authentication
Failure

Full Mediation Use of MFA Define security
requirements

Direct Access to
Objects

Open Design Protection of Sensitive Data Leveraging security
frameworks and
libraries

Access Control

Least Common
Mechanism

CSRF protections Secure database
access

Cross Site Scripting
(XSS) Cross Site
Scripting (XSS)

Data Validation

Psychological
Acceptability

Prevent XEE/JEE Coding and
escaping data

SQL Injection

Weakest Link Avoid use of certain inputs Validate all entries Buffer overflow

Leveraging Existing
Components

Use updated version of the
language

Implementing
digital identity

Falsification of
Records

Use Virtual Environment Strengthening
access controls

Dynamic SQL

CCN-CERT BP/28: Recommendations on Secure Development

annex b. Advanced cheatsheet

94

Correct import of packages Protect data
continuously

Open Redirect
Vulnerability

Use Formatting Secure
Chains

Implement security
monitoring

Output Coding

Secure Use of HTTP
Requests

Handle all errors
and exceptions

Disclosure of
information

Installed and imported
packages Secure

Weak Session
Management

Session
Management

Secure Data Deserialisation Forms Cache

Keeping Vulnerabilities
Up-to-Date

Information
Disclosure

Error Handling

Disable Debugging in
Production

Information
Disclosure

Register

Code scanning Registration does
not exist for Critical
Functions

Sensitive
Information Storage
in Unencrypted Text

Cryptography

Weak Cryptography

Insecure File Upload Secure File
ManagementInformation

Disclosure

CCN-CERT BP/28: Recommendations on Secure Development

annex b. Advanced cheatsheet

www.ccn.cni.es

www.ccn-cert.cni.es

oc.ccn.cni.es

		2024-02-12T11:29:10+0100
	CENTRO CRIPTOLOGICO NACIONAL

